977 research outputs found

    The Self-Dual String and Anomalies in the M5-brane

    Full text link
    We study the anomalies of a charge Q2Q_2 self-dual string solution in the Coulomb branch of Q5Q_5 M5-branes. Cancellation of these anomalies allows us to determine the anomaly of the zero-modes on the self-dual string and their scaling with Q2Q_2 and Q5Q_5. The dimensional reduction of the five-brane anomalous couplings then lead to certain anomalous couplings for D-branes.Comment: 13 pages, Harvmac, refs adde

    Schnabl's L_0 Operator in the Continuous Basis

    Get PDF
    Following Schnabl's analytic solution to string field theory, we calculate the operators L0,L0{\cal L}_0,{\cal L}_0^\dagger for a scalar field in the continuous κ\kappa basis. We find an explicit and simple expression for them that further simplifies for their sum, which is block diagonal in this basis. We generalize this result for the bosonized ghost sector, verify their commutation relation and relate our expressions to wedge state representations.Comment: 1+16 pages. JHEP style. Typos correcte

    Vacuum String Field Theory ancestors of the GMS solitons

    Get PDF
    We define a sequence of VSFT D-branes whose low energy limit leads exactly to a corresponding sequence of GMS solitons. The D-branes are defined by acting on a fixed VSFT lump with operators defined by means of Laguerre polynomials whose argument is quadratic in the string creation operators. The states obtained in this way form an algebra under the SFT star product, which is isomorphic to a corresponding algebra of GMS solitons under the Moyal product. In order to obtain a regularized field theory limit we embed the theory in a constant background B field.Comment: 1+16 pages; v2: typos corrected; v3: two appendices added, final versio

    Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation

    Get PDF
    We examine the time-reversal-violating nuclear ``Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex

    Triggering an eruptive flare by emerging flux in a solar active-region complex

    Full text link
    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (approximately 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and Stellar Flares. 25 pages, 12 figure

    A Quantum-Mechanical Equivalent-Photon Spectrum for Heavy-Ion Physics

    Get PDF
    In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excitation during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the detailed structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find the cross section to be weakly dependent on the projectile charge radius, and to be sensitive to only the leading momentum-transfer dependence of the target transition form factors. We exploit these facts to derive a quantum-mechanical ``equivalent-photon spectrum'' valid in the long-wavelength limit. This improved spectrum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinematics, and the response of the target nucleus to the off-shell photon.Comment: 19 pages, 5 figure

    Experimental String Field Theory

    Get PDF
    We develop efficient algorithms for level-truncation computations in open bosonic string field theory. We determine the classical action in the universal subspace to level (18,54) and apply this knowledge to numerical evaluations of the tachyon condensate string field. We obtain two main sets of results. First, we directly compute the solutions up to level L=18 by extremizing the level-truncated action. Second, we obtain predictions for the solutions for L > 18 from an extrapolation to higher levels of the functional form of the tachyon effective action. We find that the energy of the stable vacuum overshoots -1 (in units of the brane tension) at L=14, reaches a minimum E_min = -1.00063 at L ~ 28 and approaches with spectacular accuracy the predicted answer of -1 as L -> infinity. Our data are entirely consistent with the recent perturbative analysis of Taylor and strongly support the idea that level-truncation is a convergent approximation scheme. We also check systematically that our numerical solution, which obeys the Siegel gauge condition, actually satisfies the full gauge-invariant equations of motion. Finally we investigate the presence of analytic patterns in the coefficients of the tachyon string field, which we are able to reliably estimate in the L -> infinity limit.Comment: 37 pages, 6 figure

    Automated Coronal Hole Detection using Local Intensity Thresholding Techniques

    Full text link
    We identify coronal holes using a histogram-based intensity thresholding technique and compare their properties to fast solar wind streams at three different points in the heliosphere. The thresholding technique was tested on EUV and X-ray images obtained using instruments onboard STEREO, SOHO and Hinode. The full-disk images were transformed into Lambert equal-area projection maps and partitioned into a series of overlapping sub-images from which local histograms were extracted. The histograms were used to determine the threshold for the low intensity regions, which were then classified as coronal holes or filaments using magnetograms from the SOHO/MDI. For all three instruments, the local thresholding algorithm was found to successfully determine coronal hole boundaries in a consistent manner. Coronal hole properties extracted using the segmentation algorithm were then compared with in situ measurements of the solar wind at 1 AU from ACE and STEREO. Our results indicate that flux tubes rooted in coronal holes expand super-radially within 1 AU and that larger (smaller) coronal holes result in longer (shorter) duration high-speed solar wind streams

    Exact Solutions in SFT and Marginal Deformation in BCFT

    Full text link
    In this note we will study solution of open bosonic string field theory based on action of operators from chiral algebra of boundary conformal field theory on identity element of string field theory star algebra. We will demonstrate that the string field theory action for fluctuation fields around this classical solution can be mapped to the string field theory action defined through the new boundary conformal field theory that arises from the original one through the marginal deformation inserted on the world-sheet boundary.Comment: 15 pages, references adde

    Yukawa couplings in intersecting D-brane models

    Get PDF
    We compute the Yukawa couplings among chiral fields in toroidal Type II compactifications with wrapping D6-branes intersecting at angles. Those models can yield realistic standard model spectrum living at the intersections. The Yukawa couplings depend both on the Kahler and open string moduli but not on the complex structure. They arise from worldsheet instanton corrections and are found to be given by products of complex Jacobi theta functions with characteristics. The Yukawa couplings for a particular intersecting brane configuration yielding the chiral spectrum of the MSSM are computed as an example. We also show how our methods can be extended to compute Yukawa couplings on certain classes of elliptically fibered CY manifolds which are mirror to complex cones over del Pezzo surfaces. We find that the Yukawa couplings in intersecting D6-brane models have a mathematical interpretation in the context of homological mirror symmetry. In particular, the computation of such Yukawa couplings is related to the construction of Fukaya's category in a generic symplectic manifold.Comment: 47 pages, using JHEP3.cls, 11 figures. Typos and other minor corrections. References adde
    corecore