228 research outputs found
Solar-type dynamo behaviour in fully convective stars without a tachocline
In solar-type stars (with radiative cores and convective envelopes), the
magnetic field powers star spots, flares and other solar phenomena, as well as
chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The
dynamo responsible for generating the field depends on the shearing of internal
magnetic fields by differential rotation. The shearing has long been thought to
take place in a boundary layer known as the tachocline between the radiative
core and the convective envelope. Fully convective stars do not have a
tachocline and their dynamo mechanism is expected to be very different,
although its exact form and physical dependencies are not known. Here we report
observations of four fully convective stars whose X-ray emission correlates
with their rotation periods in the same way as in Sun-like stars. As the X-ray
activity - rotation relationship is a well-established proxy for the behaviour
of the magnetic dynamo, these results imply that fully convective stars also
operate a solar-type dynamo. The lack of a tachocline in fully convective stars
therefore suggests that this is not a critical ingredient in the solar dynamo
and supports models in which the dynamo originates throughout the convection
zone.Comment: 6 pages, 1 figure. Accepted for publication in Nature (28 July 2016).
Author's version, including Method
Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits
Important knowledge about the determinants of complex human phenotypes can be obtained from the estimation of heritability, the fraction of phenotypic variation in a population that is determined by genetic factors. Here, we make use of extensive phenotype data in Iceland, long-range phased genotypes, and a population-wide genealogical database to examine the heritability of 11 quantitative and 12 dichotomous phenotypes in a sample of 38,167 individuals. Most previous estimates of heritability are derived from family-based approaches such as twin studies, which may be biased upwards by epistatic interactions or shared environment. Our estimates of heritability, based on both closely and distantly related pairs of individuals, are significantly lower than those from previous studies. We examine phenotypic correlations across a range of relationships, from siblings to first cousins, and find that the excess phenotypic correlation in these related individuals is predominantly due to shared environment as opposed to dominance or epistasis. We also develop a new method to jointly estimate narrow-sense heritability and the heritability explained by genotyped SNPs. Unlike existing methods, this approach permits the use of information from both closely and distantly related pairs of individuals, thereby reducing the variance of estimates of heritability explained by genotyped SNPs while preventing upward bias. Our results show that common SNPs explain a larger proportion of the heritability than previously thought, with SNPs present on Illumina 300K genotyping arrays explaining more than half of the heritability for the 23 phenotypes examined in this study. Much of the remaining heritability is likely to be due to rare alleles that are not captured by standard genotyping arrays
Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders
Personality is influenced by genetic and environmental factors1
and associated with mental health. However, the underlying
genetic determinants are largely unknown. We identified six
genetic loci, including five novel loci2,3, significantly associated
with personality traits in a meta-analysis of genome-wide
association studies (N = 123,132–260,861). Of these genomewide
significant loci, extraversion was associated with variants
in WSCD2 and near PCDH15, and neuroticism with variants
on chromosome 8p23.1 and in L3MBTL2. We performed a
principal component analysis to extract major dimensions
underlying genetic variations among five personality traits
and six psychiatric disorders (N = 5,422–18,759). The first
genetic dimension separated personality traits and psychiatric
disorders, except that neuroticism and openness to experience
were clustered with the disorders. High genetic correlations
were found between extraversion and attention-deficit–
hyperactivity disorder (ADHD) and between openness and
schizophrenia and bipolar disorder. The second genetic
dimension was closely aligned with extraversion–introversion
and grouped neuroticism with internalizing psychopathology
(e.g., depression or anxiety)
Pupil Size in Spider Eyes Is Linked to Post-Ecdysal Lens Growth
In this study we describe a distinctive pigment ring that appears in spider eyes after ecdysis and successively decreases in size in the days thereafter. Although pigment stops in spider eyes are well known, size variability is, to our knowledge, reported here for the first time. Representative species from three families (Ctenidae, Sparassidae and Lycosidae) are investigated and, for one of these species (Cupiennius salei, Ctenidae), the progressive increase in pupil diameter is monitored. In this species the pupil occupies only a fourth of the total projected lens surface after ecdysis and reaches its final size after approximately ten days. MicroCT images suggest that the decrease of the pigment ring is linked to the growth of the corneal lens after ecdysis. The pigment rings might improve vision in the immature eye by shielding light rays that would otherwise enter the eye via peripheral regions of the cornea, beside the growing crystalline lens
Dynamics of Kv1 Channel Transport in Axons
Concerted actions of various ion channels that are precisely targeted along axons are crucial for action potential initiation and propagation, and neurotransmitter release. However, the dynamics of channel protein transport in axons remain unknown. Here, using time-lapse imaging, we found fluorescently tagged Kv1.2 voltage-gated K+ channels (YFP-Kv1.2) moved bi-directionally in discrete puncta along hippocampal axons. Expressing Kvβ2, a Kv1 accessory subunit, markedly increased the velocity, the travel distance, and the percentage of moving time of these puncta in both anterograde and retrograde directions. Suppressing the Kvβ2-associated protein, plus-end binding protein EB1 or kinesin II/KIF3A, by siRNA, significantly decreased the velocity of YFP-Kv1.2 moving puncta in both directions. Kvβ2 mutants with disrupted either Kv1.2-Kvβ2 binding or Kvβ2-EB1 binding failed to increase the velocity of YFP-Kv1.2 puncta, confirming a central role of Kvβ2. Furthermore, fluorescently tagged Kv1.2 and Kvβ2 co-moved along axons. Surprisingly, when co-moving with Kv1.2 and Kvβ2, EB1 appeared to travel markedly faster than its plus-end tracking. Finally, using fission yeast S. pombe expressing YFP-fusion proteins as reference standards to calibrate our microscope, we estimated the numbers of YFP-Kv1.2 tetramers in axonal puncta. Taken together, our results suggest that proper amounts of Kv1 channels and their associated proteins are required for efficient transport of Kv1 channel proteins along axons
Perception of general and oral health in White and African American adults: assessing the effect of neighborhood socioeconomic conditions 1
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74693/1/j.1600-0528.2004.00177.x.pd
Post-drug consequences of chronic atypical antipsychotic drug administration on the ability to adjust behavior based on feedback in young monkeys
Performance evaluation of scheduling policies for the DRCMPSP
In this study, we consider the dynamic resource-constrained multi-project scheduling problem (DRCMPSP) where projects generate rewards at their completion, completions later than a due date cause tardiness costs and new projects arrive randomly during the ongoing project execution which disturbs the existing project scheduling plan. We model this problem as a discrete Markov decision process and explore the computational limitations of solving the problem by dynamic programming. We run and compare four different solution approaches on small size problems. These solution approaches are: a dynamic programming algorithm to determine a policy that maximises the average profit per unit time net of charges for late project completion, a genetic algorithm which generates a schedule to maximise the total reward of ongoing projects and updates the schedule with each new project arrival, a rule-based algorithm which prioritise processing of tasks with the highest processing durations, and a worst decision algorithm to seek a non-idling policy to minimise the average profit per unit time. Average profits per unit time of generated policies of the solution algorithms are evaluated and compared. The performance of the genetic algorithm is the closest to the optimal policies of the dynamic programming algorithm, but its results are notably suboptimal, up to 67.2\%. Alternative scheduling algorithms are close to optimal with low project arrival probability but quickly deteriorate their performance as the probability increases
A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay.
We report the identification of a recurrent, 520-kb 16p12.1 microdeletion associated with childhood developmental delay. The microdeletion was detected in 20 of 11,873 cases compared with 2 of 8,540 controls (P = 0.0009, OR = 7.2) and replicated in a second series of 22 of 9,254 cases compared with 6 of 6,299 controls (P = 0.028, OR = 2.5). Most deletions were inherited, with carrier parents likely to manifest neuropsychiatric phenotypes compared to non-carrier parents (P = 0.037, OR = 6). Probands were more likely to carry an additional large copy-number variant when compared to matched controls (10 of 42 cases, P = 5.7 x 10(-5), OR = 6.6). The clinical features of individuals with two mutations were distinct from and/or more severe than those of individuals carrying only the co-occurring mutation. Our data support a two-hit model in which the 16p12.1 microdeletion both predisposes to neuropsychiatric phenotypes as a single event and exacerbates neurodevelopmental phenotypes in association with other large deletions or duplications. Analysis of other microdeletions with variable expressivity indicates that this two-hit model might be more generally applicable to neuropsychiatric disease
- …
