795 research outputs found

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    A novel electrospun, hydrophobic, and elastomeric styrene-butadiene-styrene membrane for membrane distillation applications

    Full text link
    © 2017 In this study, a novel hydrophobic, microporous membrane was fabricated from styrene-butadiene-styrene (SBS) polymer using electrospinning and evaluated for membrane distillation applications. Compared to a commercially available polytetrafluoroethylene (PTFE) membrane, the SBS membrane had larger membrane pore size and fiber diameter and comparable membrane porosity. The fabricated SBS showed slightly lower water flux than the PTFE membrane because it was two times thicker. However, the SBS membrane had better salt rejection and most importantly could be fabricated via a simple process. The SBS membrane was also more hydrophobic than the reference PTFE membrane. In particular, as temperature of the reference water liquid increased to 60 °C, the SBS membrane remained hydrophobic with a contact angle of 100° whereas the PTFE became hydrophilic with a contact angle of less than 90°. The hydrophobic membrane surface prevented the intrusion of liquid into the membrane pores, thus improving the salt rejection of the SBS membrane. In addition, the SBS membrane had superior mechanical strength over the PTFE membrane. Using the SBS membrane, stable water flux was achieved throughout an extended MD operation period of 120 h to produce excellent quality distillate (over 99.7% salt rejection) from seawater

    ACL injuries identifiable for pre-participation imagiological analysis: Risk factors

    Get PDF
    Identification of pre-participation risk factors for noncontact anterior cruciate ligament (ACL) injuries has been attracting a great deal of interest in the sports medicine and traumatology communities. Appropriate methods that enable predicting which patients could benefit from pre- ventive strategies are most welcome. This would enable athlete-specific training and conditioning or tailored equipment in order to develop appropriate strategies to reduce incidence of injury. In order to accomplish these goals, the ideal system should be able to assess both anatomic and functional features. Complementarily, the screening method must be cost-effective and suited for widespread application. Anatomic study protocol requiring only standard X rays could answer some of such demands. Dynamic MRI/CT evaluation and electronically assisted pivot-shift evaluation can be powerful tools providing complementary information. These upcoming insights, when validated and properly combined, envision changing pre-participation knee examination in the near future. Herein different methods (validated or under research) aiming to improve the capacity to identify persons/athletes with higher risk for ACL injury are overviewed.

    Strategies to diagnose ovarian cancer: new evidence from phase 3 of the multicentre international IOTA study

    Get PDF
    Background: To compare different ultrasound-based international ovarian tumour analysis (IOTA) strategies and risk of malignancy index (RMI) for ovarian cancer diagnosis using a meta-analysis approach of centre-specific data from IOTA3. Methods: This prospective multicentre diagnostic accuracy study included 2403 patients with 1423 benign and 980 malignant adnexal masses from 2009 until 2012. All patients underwent standardised transvaginal ultrasonography. Test performance of RMI, subjective assessment (SA) of ultrasound findings, two IOTA risk models (LR1 and LR2), and strategies involving combinations of IOTA simple rules (SRs), simple descriptors (SDs) and LR2 with and without SA was estimated using a meta-analysis approach. Reference standard was histology after surgery. Results: The areas under the receiver operator characteristic curves of LR1, LR2, SA and RMI were 0.930 (0.917–0.942), 0.918 (0.905–0.930), 0.914 (0.886–0.936) and 0.875 (0.853–0.894). Diagnostic one-step and two-step strategies using LR1, LR2, SR and SD achieved summary estimates for sensitivity 90–96%, specificity 74–79% and diagnostic odds ratio (DOR) 32.8–50.5. Adding SA when IOTA methods yielded equivocal results improved performance (DOR 57.6–75.7). Risk of Malignancy Index had sensitivity 67%, specificity 91% and DOR 17.5. Conclusions: This study shows all IOTA strategies had excellent diagnostic performance in comparison with RMI. The IOTA strategy chosen may be determined by clinical preference

    Panel 4 : Report of the Microbiology Panel

    Get PDF
    Objective. To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources. PubMed database of the National Library of Medicine. Review Methods. Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions. Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice. (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.Peer reviewe

    Sex-specific relevance of diabetes to occlusive vascular and other mortality : a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies

    Get PDF
    Background: Several studies have shown that diabetes confers a higher relative risk of vascular mortality among women than among men, but whether this increased relative risk in women exists across age groups and within defined levels of other risk factors is uncertain. We aimed to determine whether differences in established risk factors, such as blood pressure, BMI, smoking, and cholesterol, explain the higher relative risks of vascular mortality among women than among men. Methods: In our meta-analysis, we obtained individual participant-level data from studies included in the Prospective Studies Collaboration and the Asia Pacific Cohort Studies Collaboration that had obtained baseline information on age, sex, diabetes, total cholesterol, blood pressure, tobacco use, height, and weight. Data on causes of death were obtained from medical death certificates. We used Cox regression models to assess the relevance of diabetes (any type) to occlusive vascular mortality (ischaemic heart disease, ischaemic stroke, or other atherosclerotic deaths) by age, sex, and other major vascular risk factors, and to assess whether the associations of blood pressure, total cholesterol, and body-mass index (BMI) to occlusive vascular mortality are modified by diabetes. Findings: Individual participant-level data were analysed from 980793 adults. During 9 center dot 8 million person-years of follow-up, among participants aged between 35 and 89 years, 19686 (25 center dot 6%) of 76965 deaths were attributed to occlusive vascular disease. After controlling for major vascular risk factors, diabetes roughly doubled occlusive vascular mortality risk among men (death rate ratio [RR] 2 center dot 10, 95% CI 1 center dot 97-2 center dot 24) and tripled risk among women (3 center dot 00, 2 center dot 71-3 center dot 33; x(2) test for heterogeneity p<0 center dot 0001). For both sexes combined, the occlusive vascular death RRs were higher in younger individuals (aged 35-59 years: 2 center dot 60, 2 center dot 30-2 center dot 94) than in older individuals (aged 70-89 years: 2 center dot 01, 1 center dot 85-2 center dot 19; p=0 center dot 0001 for trend across age groups), and, across age groups, the death RRs were higher among women than among men. Therefore, women aged 35-59 years had the highest death RR across all age and sex groups (5 center dot 55, 4 center dot 15-7 center dot 44). However, since underlying confounder-adjusted occlusive vascular mortality rates at any age were higher in men than in women, the adjusted absolute excess occlusive vascular mortality associated with diabetes was similar for men and women. At ages 35-59 years, the excess absolute risk was 0 center dot 05% (95% CI 0 center dot 03-0 center dot 07) per year in women compared with 0 center dot 08% (0 center dot 05-0 center dot 10) per year in men; the corresponding excess at ages 70-89 years was 1 center dot 08% (0 center dot 84-1 center dot 3 2) per year in women and 0 center dot 91% (0 center dot 77-1 center dot 05) per year in men. Total cholesterol, blood pressure, and BMI each showed continuous log-linear associations with occlusive vascular mortality that were similar among individuals with and without diabetes across both sexes. Interpretation: Independent of other major vascular risk factors, diabetes substantially increased vascular risk in both men and women. Lifestyle changes to reduce smoking and obesity and use of cost-effective drugs that target major vascular risks (eg, statins and antihypertensive drugs) are important in both men and women with diabetes, but might not reduce the relative excess risk of occlusive vascular disease in women with diabetes, which remains unexplained

    The unfolded protein response in immunity and inflammation.

    Get PDF
    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.This work was supported by the Netherlands Organization for Scientific Research Rubicon grant 825.13.012 (J.G.); US National Institutes of Health (NIH) grants DK044319, DK051362, DK053056 and DK088199, and the Harvard Digestive Diseases Center (HDDC) grant DK034854 (R.S.B.); National Institutes of Health grants DK042394, DK088227, DK103183 and CA128814 (R.J.K.); and European Research Council (ERC) Starting Grant 260961, ERC Consolidator Grant 648889, and the Wellcome Trust Investigator award 106260/Z/14/Z (A.K.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nri.2016.6

    Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review

    Full text link
    © 2019, © 2019 Taylor & Francis Group, LLC. Contaminants in water bodies cause potential health risks for humans and great environmental threats. Therefore, the development and exploration of low-cost, promising adsorbents to remove contaminants from water resources as a sustainable option is one focus of the scientific community. Here, we conducted a critical review regarding the application of pristine and modified/treated biosorbents derived from leaves for the removal of various contaminants. These include potentially toxic cationic and oxyanionic metal ions, radioactive metal ions, rare earth elements, organic cationic and anionic dyes, phosphate, ammonium, and fluoride from water media. Similar to lignocellulose-based biosorbents, leaf-based biosorbents exhibit a low specific surface area and total pore volume but have abundant surface functional groups, high concentrations of light metals, and a high net surface charge density. The maximum adsorption capacity of biosorbents strongly depends on the operation conditions, experiment types, and adsorbate nature. The absorption mechanism of contaminants onto biosorbents is complex; therefore, typical experiments used to identify the primary mechanism of the adsorption of contaminants onto biosorbents were thoroughly discussed. It was concluded that byproduct leaves are renewable, biodegradable, and promising biosorbents which have the potential to be used as a low-cost green alternative to commercial activated carbon for effective removal of various contaminants from the water environment in the real-scale plants

    Mutations acquired by hepatocellular carcinoma recurrence give rise to an aggressive phenotype

    Get PDF
    Recurrence of hepatocellular carcinoma (HCC) even after curative resection causes dismal outcomes of patients. Here, to delineate the driver events of genomic and transcription alteration during HCC recurrence, we performed RNA-Seq profiling of the paired primary and recurrent tumors from two patients with intrahepatic HCC. By comparing the mutational and transcriptomic profiles, we identified somatic mutations acquired by HCC recurrence including novel mutants of GOLGB1 (E2721V) and SF3B3 (H804Y). By performing experimental evaluation using siRNA-mediated knockdown and overexpression constructs, we demonstrated that the mutants of GOLGB1 and SF3B3 can promote cell proliferation, colony formation, migration, and invasion of liver cancer cells. Transcriptome analysis also revealed that the recurrent HCCs reprogram their transcriptomes to acquire aggressive phenotypes. Network analysis revealed CXCL8 (IL-8) and SOX4 as common downstream targets of the mutants. In conclusion, we suggest that the mutations of GOLGB1 and SF3B3 are potential key drivers for the acquisition of an aggressive phenotype in recurrent HCC
    corecore