94 research outputs found

    Little evidence for a selective advantage of armour-reduced threespined stickleback individuals in an invertebrate predation experiment

    Get PDF
    The repeated colonization of freshwater habitats by the ancestrally marine threespined stickleback Gasterosteus aculeatus has been associated with many instances of parallel reduction in armour traits, most notably number of lateral plates. The change in predation regime from marine systems, dominated by gape-limited predators such as piscivorous fishes, to freshwater habitats where grappling invertebrate predators such as insect larvae can dominate the predation regime, has been hypothesized as a driving force. Here we experimentally test the hypothesis that stickleback with reduced armour possess a selective advantage in the face of predation by invertebrates, using a natural population of stickleback that is highly polymorphic for armour traits and a common invertebrate predator from the same location. Our results provide no compelling evidence for selection in this particular predator–prey interaction. We suggest that the postulated selective advantage of low armour in the face of invertebrate predation may not be universal

    Transgene × Environment Interactions in Genetically Modified Wheat

    Get PDF
    BACKGROUND: The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. METHODS AND FINDINGS: We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. CONCLUSIONS: Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology

    Mesenchymal tumours of the mediastinum—part II

    Get PDF

    Ranavirus Replication: Molecular, Cellular, and Immunological Events

    Full text link

    A new broccoli × broccoli immortal mapping population and framework genetic map: tools for breeders and complex trait analysis

    Get PDF
    A unique broccoli x broccoli doubled haploid (DH) population has been created from the F-1 of a cross between two DH broccoli lines derived from cultivars Green Duke and Marathon. We genotyped 154 individuals from this population with simple sequence repeat and amplified fragment length polymorphism markers to create a B. oleracea L. var. italica 'intra-crop' specific framework linkage map. The map is composed of nine linkage groups with a total length of 946.7 cM. Previous published B. oleracea maps have been constructed using diverse crosses between morphotypes of B. oleracea; this map therefore represents a useful breeding resource for the dissection of broccoli specific traits. Phenotype data have been collected from the population over five growing seasons; the framework linkage map has been used to locate quantitative trait loci for agronomically important broccoli traits including head weight (saleable yield), head diameter, stalk diameter, weight loss and relative weight loss during storage, as well as traits for broccoli leaf architecture. This population and associated linkage map will aid breeders to directly map agronomically important traits for the improvement of elite broccoli cultivars

    The promise of genomics in the study of plant-pollinator interactions

    Get PDF
    Flowers exist in exceedingly complex fitness landscapes, in which subtle variation in each trait can affect the pollinators, herbivores and pleiotropically linked traits in other plant tissues. A whole-genome approach to flower evolution will help our understanding of plant-pollinator interactions
    corecore