22,209 research outputs found

    The distribution of species range size: a stochastic process

    Get PDF
    The major role played by environmental factors in determining the geographical range sizes of species raises the possibility of describing their long-term dynamics in relatively simple terms, a goal which has hitherto proved elusive. Here we develop a stochastic differential equation to describe the dynamics of the range size of an individual species based on the relationship between abundance and range size, derive a limiting stationary probability model to quantify the stochastic nature of the range size for that species at steady state, and then generalize this model to the species-range size distribution for an assemblage. The model fits well to several empirical datasets of the geographical range sizes of species in taxonomic assemblages, and provides the simplest explanation of species-range size distributions to date

    Electronic Tuning of Mixed Quinoidal‐Aromatic Conjugated Polyelectrolytes: Direct Ionic Substitution on Polymer Main‐Chains

    Get PDF
    The synthesis of conjugated polymers with ionic substituents directly bound to their main chain repeat units is a strategy for generating strongly electron-accepting conjugated polyelectrolytes, as demonstrated through the synthesis of a series of ionic azaquinodimethane (iAQM) compounds. The introduction of cationic substituents onto the quinoidal para-azaquinodimethane (AQM) core gives rise to a strongly electron-accepting building block, which can be employed in the synthesis of ionic small molecules and conjugated polyelectrolytes (CPEs). Electrochemical measurements alongside theoretical calculations indicate notably low-lying LUMO values for the iAQMs. The optical band gaps measured for these compounds are highly tunable based on structure, ranging from 2.30 eV in small molecules down to 1.22 eV in polymers. The iAQM small molecules and CPEs showcase the band gap reduction effects of combining the donor-acceptor strategy with the bond-length alternation reduction strategy. As a demonstration of their utility, the iAQM CPEs so generated were used as active agents in photothermal therapy

    Fermion kinetics in the Falicov-Kimball limit of the three-band Emery model

    Full text link
    The three-band Emery model is reduced to a single-particle quantum model of Falicov-Kimball type, by allowing only up-spins to hop, and forbidding double occupation by projection. It is used to study the effects of geometric obstruction on mobile fermions in thermodynamic equilibrium. For low hopping overlap, there appears a plateau in the entropy, due to charge correlations, and related to real-space disorder. For large overlap, the equilibrium thermopower susceptibility remains anomalous, with a sign opposite to the one predicted from the single-particle density of states. The heat capacity and non-Fermi liquid response are discussed in the context of similar results in the literature. All results are obtained by evaluation of an effective single-particle free-energy operator in closed form. The method to obtain this operator is described in detail.Comment: New calculations, method explained in detail, 16 pages, 9 figure

    Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge

    Full text link
    This paper presents a state-of-the-art model for visual question answering (VQA), which won the first place in the 2017 VQA Challenge. VQA is a task of significant importance for research in artificial intelligence, given its multimodal nature, clear evaluation protocol, and potential real-world applications. The performance of deep neural networks for VQA is very dependent on choices of architectures and hyperparameters. To help further research in the area, we describe in detail our high-performing, though relatively simple model. Through a massive exploration of architectures and hyperparameters representing more than 3,000 GPU-hours, we identified tips and tricks that lead to its success, namely: sigmoid outputs, soft training targets, image features from bottom-up attention, gated tanh activations, output embeddings initialized using GloVe and Google Images, large mini-batches, and smart shuffling of training data. We provide a detailed analysis of their impact on performance to assist others in making an appropriate selection.Comment: Winner of the 2017 Visual Question Answering (VQA) Challenge at CVP

    Prokineticin 2 Is a Target Gene of Proneural Basic Helix-Loop-Helix Factors for Olfactory Bulb Neurogenesis

    Get PDF
    Prokineticin 2, a cysteine-rich secreted protein, regulates diverse biological functions including the neurogenesis of olfactory bulb. Here we show that the PK2 gene is a functional target gene of proneural basic helix-loop-helix (bHLH) factors. Neurogenin 1 and MASH1 activate PK2 transcription by binding to E-box motifs on the PK2 promoter with the same set of E-boxes critical for another pair of bHLH factors, CLOCK and BMAL1, in the regulation of circadian clock. Our results establish PK2 as a common functional target gene for different bHLH transcriptional factors in mediating their respective functions

    Information theoretic novelty detection

    Get PDF
    We present a novel approach to online change detection problems when the training sample size is small. The proposed approach is based on estimating the expected information content of a new data point and allows an accurate control of the false positive rate even for small data sets. In the case of the Gaussian distribution, our approach is analytically tractable and closely related to classical statistical tests. We then propose an approximation scheme to extend our approach to the case of the mixture of Gaussians. We evaluate extensively our approach on synthetic data and on three real benchmark data sets. The experimental validation shows that our method maintains a good overall accuracy, but significantly improves the control over the false positive rate

    Color-coordinate system from a 13th-century account of rainbows.

    Get PDF
    We present a new analysis of Robert Grosseteste’s account of color in his treatise De iride (On the Rainbow), dating from the early 13th century. The work explores color within the 3D framework set out in Grosseteste’s De colore [see J. Opt. Soc. Am. A 29, A346 (2012)], but now links the axes of variation to observable properties of rainbows. We combine a modern understanding of the physics of rainbows and of human color perception to resolve the linguistic ambiguities of the medieval text and to interpret Grosseteste’s key terms
    corecore