1,364 research outputs found

    Wavelength dependence of electron localization in the laser-driven dissociation of H2+_2^+

    Full text link
    We theoretically investigate the laser wavelength dependence of asymmetric dissociation of H2+_2^+. It is found that the electron localization in molecular dissociation is significantly manipulated by varying the wavelength of the driving field. Through creating a strong nuclear vibration in the laser-molecular interaction, our simulations demonstrate that the few-cycle mid-infrared pulse can effectively localize the electron at one of the dissociating nuclei with weak ionization. Moreover, we show that the observed phase-shift of the dissociation asymmetry is attributed to the different population transfers by the remaining fields after the internuclear distances reach the one-photon coupling point.Comment: 11 pages, 7 figure

    A new photocrosslinkable polycaprolactone based ink for three dimensional inkjet printing

    Get PDF
    A new type of photocrosslinkable polycaprolactone (PCL)-based ink that is suitable for three-dimensional (3D) inkjet printing has been developed. Photocrosslinkable PCL dimethylacrylate was synthesized and mixed with poly(ethylene glycol) diacrylate to prepare an ink with a suitable viscosity for inkjet printing. The ink performance under different printing environments, initiator concentrations, and postprocess was studied. This showed that a nitrogen atmosphere during printing was beneficial for curing and material property optimization, as well as improving the quality of structures produced. A simple structure, building in the z-direction, demonstrated the potential for thismaterial for the production of 3D printed objects. Cells’ testwas carried out to investigate the biocompatibility of the developed ink

    A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury.

    Get PDF
    Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted--ischemia--and then restored--reperfusion--leading to a burst of reactive oxygen species (ROS) from mitochondria. It has been tacitly assumed that ROS production during IR is a non-specific consequence of oxygen interacting with dysfunctional mitochondria upon reperfusion. Recently, this view has changed, suggesting that ROS production during IR occurs by a defined mechanism. Here we survey the metabolic factors underlying IR injury and propose a unifying mechanism for its causes that makes sense of the huge amount of disparate data in this area and provides testable hypotheses and new directions for therapies.Work in our laboratories is supported by the Medical Research Council (UK) and the British Heart Foundation. E.T.C. is supported by a Human Frontiers Science Program fellowship.This is the author accepted manuscript. The final version is available from Cell Press via http://dx.doi.org/10.1016/j.cmet.2015.12.00

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Measurements of the pp → ZZ production cross section and the Z → 4ℓ branching fraction, and constraints on anomalous triple gauge couplings at √s = 13 TeV

    Get PDF
    Four-lepton production in proton-proton collisions, pp -> (Z/gamma*)(Z/gamma*) -> 4l, where l = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb(-1). The ZZ production cross section, sigma(pp -> ZZ) = 17.2 +/- 0.5 (stat) +/- 0.7 (syst) +/- 0.4 (theo) +/- 0.4 (lumi) pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 4l) = 4.83(-0.22)(+0.23) (stat)(-0.29)(+0.32) (syst) +/- 0.08 (theo) +/- 0.12(lumi) x 10(-6) for events with a four-lepton invariant mass in the range 80 4GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ. couplings at 95% confidence level: -0.0012 < f(4)(Z) < 0.0010, -0.0010 < f(5)(Z) < 0.0013, -0.0012 < f(4)(gamma) < 0.0013, -0.0012 < f(5)(gamma) < 0.0013

    Cyclic Nucleotide-gated Ion Channels in Rod Photoreceptors Are Protected from Retinoid Inhibition

    Get PDF
    In vertebrate rods, photoisomerization of the 11-cis retinal chromophore of rhodopsin to the all-trans conformation initiates a biochemical cascade that closes cGMP-gated channels and hyperpolarizes the cell. All-trans retinal is reduced to retinol and then removed to the pigment epithelium. The pigment epithelium supplies fresh 11-cis retinal to regenerate rhodopsin. The recent discovery that tens of nanomolar retinal inhibits cloned cGMP-gated channels at low [cGMP] raised the question of whether retinoid traffic across the plasma membrane of the rod might participate in the signaling of light. Native channels in excised patches from rods were very sensitive to retinoid inhibition. Perfusion of intact rods with exogenous 9- or 11-cis retinal closed cGMP-gated channels but required higher than expected concentrations. Channels reopened after perfusing the rod with cellular retinoid binding protein II. PDE activity, flash response kinetics, and relative sensitivity were unchanged, ruling out pharmacological activation of the phototransduction cascade. Bleaching of rhodopsin to create all-trans retinal and retinol inside the rod did not produce any measurable channel inhibition. Exposure of a bleached rod to 9- or 11-cis retinal did not elicit channel inhibition during the period of rhodopsin regeneration. Microspectrophotometric measurements showed that exogenous 9- or 11-cis retinal rapidly cross the plasma membrane of bleached rods and regenerate their rhodopsin. Although dark-adapted rods could also take up large quantities of 9-cis retinal, which they converted to retinol, the time course was slow. Apparently cGMP-gated channels in intact rods are protected from the inhibitory effects of retinoids that cross the plasma membrane by a large-capacity buffer. Opsin, with its chromophore binding pocket occupied (rhodopsin) or vacant, may be an important component. Exceptionally high retinoid levels, e.g., associated with some retinal degenerations, could overcome the buffer, however, and impair sensitivity or delay the recovery after exposure to bright light
    corecore