271 research outputs found

    Spatial downscaling of precipitation using adaptable random forests

    No full text
    This paper introduces Prec-DWARF (Precipitation Downscaling With Adaptable Random Forests), a novel machine-learning based method for statistical downscaling of precipitation. Prec-DWARF sets up a nonlinear relationship between precipitation at fine resolution and covariates at coarse/fine resolution, based on the advanced binary tree method known as Random Forests (RF). In addition to a single RF, we also consider a more advanced implementation based on two independent RFs which yield better results for extreme precipitation. Hourly gauge-radar precipitation data at 0.125° from NLDAS-2 are used to conduct synthetic experiments with different spatial resolutions (0.25°, 0.5°, and 1°). Quantitative evaluation of these experiments demonstrates that Prec-DWARF consistently outperforms the baseline (i.e., bilinear interpolation in this case) and can reasonably reproduce the spatial and temporal patterns, occurrence and distribution of observed precipitation fields. However, Prec-DWARF with a single RF significantly underestimates precipitation extremes and often cannot correctly recover the fine-scale spatial structure, especially for the 1° experiments. Prec-DWARF with a double RF exhibits improvement in the simulation of extreme precipitation as well as its spatial and temporal structures, but variogram analyses show that the spatial and temporal variability of the downscaled fields are still strongly underestimated. Covariate importance analysis shows that the most important predictors for the downscaling are the coarse-scale precipitation values over adjacent grid cells as well as the distance to the closest dry grid cell (i.e., the dry drift). The encouraging results demonstrate the potential of Prec-DWARF and machine-learning based techniques in general for the statistical downscaling of precipitation

    Wastewater irrigation: the state of play

    Full text link
    As demand for fresh water intensifies, wastewater is frequently being seen as a valuable resource. Furthermore, wise reuse of wastewater alleviates concerns attendant with its discharge to the environment. Globally, around 20 million ha of land are irrigated with wastewater, and this is likely to increase markedly during the next few decades as water stress intensifies. In 1995, around 2.3 billion people lived in water-stressed river basins and this could increase to 3.5 billion by 2025. We review the current status of wastewater irrigation by providing an overview of the extent of the practice throughout the world and through synthesizing the current understanding of factors influencing sustainable wastewater irrigation. A theme that emerges is that wastewater irrigation is not only more common in water-stressed regions such as the Near East, but the rationale for the practice also tends to differ between the developing and developed worlds. In developing nations, the prime drivers are livelihood dependence and food security, whereas environmental agendas appear to hold greater sway in the developed world. The following were identified as areas requiring greater understanding for the long-term sustainability of wastewater irrigation: (i) accumulation of bioavailable forms of heavy metals in soils, (ii) environmental fate of organics in wastewater-irrigated soils, (iii) influence of reuse schemes on catchment hydrology, including transport of salt loads, (iv) risk models for helminth infections (pertinent to developing nations), (v) microbiological contamination risks for aquifers and surface waters, (vi) transfer efficiencies of chemical contaminants from soil to plants, (vii) health effects of chronic exposure to chemical contaminants, and (viii) strategies for engaging the public.<br /

    Structural basis for the sequence-dependent effects of platinum–DNA adducts

    Get PDF
    The differences in efficacy and molecular mechanisms of platinum based anti-cancer drugs cisplatin (CP) and oxaliplatin (OX) have been hypothesized to be in part due to the differential binding affinity of cellular and damage recognition proteins to CP and OX adducts formed on adjacent guanines in genomic DNA. HMGB1a in particular exhibits higher binding affinity to CP-GG adducts, and the extent of discrimination between CP- and OX-GG adducts is dependent on the bases flanking the adducts. However, the structural basis for this differential binding is not known. Here, we show that the conformational dynamics of CP- and OX-GG adducts are distinct and depend on the sequence context of the adduct. Molecular dynamics simulations of the Pt-GG adducts in the TGGA sequence context revealed that even though the major conformations of CP- and OX-GG adducts were similar, the minor conformations were distinct. Using the pattern of hydrogen bond formation between the Pt–ammines and the adjacent DNA bases, we identified the major and minor conformations sampled by Pt–DNA. We found that the minor conformations sampled exclusively by the CP-GG adduct exhibit structural properties that favor binding by HMGB1a, which may explain its higher binding affinity to CP-GG adducts, while these conformations are not sampled by OX-GG adducts because of the constraints imposed by its cyclohexane ring, which may explain the negligible binding affinity of HMGB1a for OX-GG adducts in the TGGA sequence context. Based on these results, we postulate that the constraints imposed by the cyclohexane ring of OX affect the DNA conformations explored by OX-GG adduct compared to those of CP-GG adduct, which may influence the binding affinities of HMG-domain proteins for Pt-GG adducts, and that these conformations are further influenced by the DNA sequence context of the Pt-GG adduct

    Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues and future prospects

    Get PDF
    Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physico-chemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metals-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches, evaluate their efficacy to remove toxic metals from our natural environment, explore current scientific progresses, field experiences and sustainability issues and revise world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in 21st century

    The Neural Basis of Cognitive Efficiency in Motor Skill Performance from Early Learning to Automatic Stages

    Get PDF

    Bacteria-zinc co-localisation implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum

    Get PDF
    Some plant growth promoting bacteria (PGPB) are enigmatic in enhancing plant growth in the face of increased metal accumulation in plants. Since most PGPB colonize the plant root epidermis, we hypothesized that PGPB confer tolerance to metals through changes in speciation at the root epidermis. . We employed a novel combination of fluorophore-based confocal laser scanning microscopic imaging and synchrotron based microscopic X-ray fluorescence mapping with X-ray absorption spectroscopy to characterize bacterial localization, zinc (Zn) distribution and speciation in the roots of Brassica juncea grown in Zn contaminated media (400 mg kg(−1) Zn) with the endophytic Pseudomonas brassicacearum and rhizospheric Rhizobium leguminosarum. . PGPB enhanced epidermal Zn sequestration relative to PGBP-free controls while the extent of endophytic accumulation depended on the colonization mode of each PGBP. Increased root accumulation of Zn and increased tolerance to Zn was associated predominantly with R. leguminosarum and was likely due to the coordination of Zn with cysteine-rich peptides in the root endodermis, suggesting enhanced synthesis of phytochelatins or glutathione. . Our mechanistic model of enhanced Zn accumulation and detoxification in plants inoculated with R. leguminosarum has particular relevance to PGPB enhanced phytoremediation of soils contaminated through mining and oxidation of sulphur-bearing Zn minerals or engineered nanomaterials such as ZnS.

    Oral abstracts of the 21st International AIDS Conference 18-22 July 2016, Durban, South Africa

    Get PDF
    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n=122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression.Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed.Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants.Expression of ‘exhaustion’ or ‘immune checkpoint’ markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches
    corecore