739 research outputs found
Transgenic soybean production of bioactive human epidermal growth factor (EGF)
Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform
Hadroproduction of the Chi1 and Chi2 States of Charmonium in 800 GeV/c Proton-Silicon Interactions
The cross sections for the hadroproduction of the Chi1 and Chi2 states of
charmonium in proton-silicon collisions at sqrt{s}=38.8 GeV have been measured
in Fermilab fixed target Experiment 771. The Chi states were observed via their
radiative decay to J/psi+gamma, where the photon converted to e+e- in the
material of the spectrometer. The measured values for the Chi1 and Chi2 cross
sections for x_F>0 are 263+-69(stat)+-32(syst) and 498+-143(stat)+-67(syst) nb
per nucleon respectively. The resulting sigma(Chi1}/sigma(Chi2) ratio of
0.53+-0.20(stat)+-0.07(syst), although somewhat larger than most theoretical
expectations, can be accomodated by the latest theoretical estimates.Comment: 4 pages, 4 figure
Optical Properties of III-Mn-V Ferromagnetic Semiconductors
We review the first decade of extensive optical studies of ferromagnetic,
III-Mn-V diluted magnetic semiconductors. Mn introduces holes and local moments
to the III-V host, which can result in carrier mediated ferromagnetism in these
disordered semiconductors. Spectroscopic experiments provide direct access to
the strength and nature of the exchange between holes and local moments; the
degree of itineracy of the carriers; and the evolution of the states at the
Fermi energy with doping. Taken together, diversity of optical methods reveal
that Mn is an unconventional dopant, in that the metal to insulator transition
is governed by the strength of the hybridization between Mn and its p-nictogen
neighbor. The interplay between the optical, electronic and magnetic properties
of III-Mn-V magnetic semiconductors is of fundamental interest and may enable
future spin-optoelectronic devices.Comment: Topical Revie
Integrating Diverse Datasets Improves Developmental Enhancer Prediction
Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further investigate questions in developmental biology. © 2014 Erwin et al
Genomewide association study of leprosy.
BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae
The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase
Tumour metastasis is a complex process involving reciprocal interplay
between cancer cells and host stroma at both primary and secondary
sites, and is strongly influenced by microenvironmental
factors such as hypoxia. Tumour-secreted proteins play a crucial role
in these interactions and present strategic therapeutic potential.
Metastasis of breast cancer to the bone affects approximately 85%
of patients with advanced disease and renders them largely untreatable. Specifically, osteolytic bone lesions, where bone is destroyed,
lead to debilitating skeletal complications and increased patient morbidity
and mortality. The molecular interactions governing the
early events of osteolytic lesion formation are currently unclear.
Here we show hypoxia to be specifically associated with bone relapse
in patients with oestrogen-receptor negative breast cancer. Global
quantitative analysis of the hypoxic secretome identified lysyl oxidase
(LOX) as significantly associated with bone-tropism and relapse.
High expression of LOX in primary breast tumours or systemic delivery
of LOX leads to osteolytic lesion formation whereas silencing or
inhibition of LOX activity abrogates tumour-driven osteolytic lesion
formation. We identify LOX as a novel regulator of NFATc1-driven
osteoclastogenesis,independent of RANK ligand, which disrupts normal
bone homeostasisleading to the formation of focal pre-metastatic
lesions. We show that these lesions subsequently provide a platform
for circulating tumour cells to colonize and form bone metastases.
Our study identifies a novel mechanism of regulation of bone homeostasis
and metastasis, opening up opportunities for novel therapeutic
intervention with important clinical implications
Enhanced soil aggregate stability limits colloidal phosphorus loss potentials in agricultural systems
BackgroundColloid-facilitated phosphorus (P) transport is recognized as an important pathway for the loss of soil P in agricultural systems; however, information regarding soil aggregate-associated colloidal P (Pcoll) is lacking. To elucidate the effects of aggregate size on the potential loss of Pcoll in agricultural systems, soils (0–20 cm depth) from six land-use types were sampled in the Zhejiang Province in the Yangtze River Delta region, China. The aggregate size fractions (2–8 mm, 0.26–2 mm, 0.053–0.26 mm and < 0.053 mm) were separated using the wet sieving method. Colloidal P and other soil parameters in aggregates were analyzed.ResultsOur study demonstrated that 0.26–2 mm small macroaggregates had the highest total P (TP) content. In acidic soils, the highest Pcoll content was observed in the 0.26- to 2-mm-sized aggregates, while the lowest was reported in the < 0.053 mm (silt + clay)-sized particles, the opposite of that revealed in alkaline and neutral soils. Paddy soils contained less Pcoll than other land-use types. The proportion of Pcoll in total dissolved P (TDP) was dominated by < 0.053 mm (silt + clay)-sized particles. Aggregate size strongly influenced the loss potential of Pcoll in paddy soils, where Pcoll contributed up to 83% TDP in the silt + clay-sized particles. The Pcoll content was positively correlated with TP, Al, Fe, and the mean weight diameter. Aggregate-associated total carbon (TC), total nitrogen (TN), C/P, and C/N had significant negative effects on the contribution of Pcoll to potential soil P loss. The Pcoll content of the aggregates was controlled by the aggregate-associated TP and Al content, as well as the soil pH value. The potential loss of Pcoll from aggregates was controlled by its organic matter content.ConclusionWe concluded that management practices that increase soil aggregate stability or its organic carbon content will limit Pcoll loss in agricultural systems
Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.
Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation
Tree height integrated into pantropical forest biomass estimates
Copyright © 2012 European Geosciences Union. This is the published version available at http://www.biogeosciences.net/9/3381/2012/bg-9-3381-2012.htmlAboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions:
1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass?
2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots?
3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates?
The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation
- …
