10,146 research outputs found
MoSculp: Interactive Visualization of Shape and Time
We present a system that allows users to visualize complex human motion via
3D motion sculptures---a representation that conveys the 3D structure swept by
a human body as it moves through space. Given an input video, our system
computes the motion sculptures and provides a user interface for rendering it
in different styles, including the options to insert the sculpture back into
the original video, render it in a synthetic scene or physically print it.
To provide this end-to-end workflow, we introduce an algorithm that estimates
that human's 3D geometry over time from a set of 2D images and develop a
3D-aware image-based rendering approach that embeds the sculpture back into the
scene. By automating the process, our system takes motion sculpture creation
out of the realm of professional artists, and makes it applicable to a wide
range of existing video material.
By providing viewers with 3D information, motion sculptures reveal space-time
motion information that is difficult to perceive with the naked eye, and allow
viewers to interpret how different parts of the object interact over time. We
validate the effectiveness of this approach with user studies, finding that our
motion sculpture visualizations are significantly more informative about motion
than existing stroboscopic and space-time visualization methods.Comment: UIST 2018. Project page: http://mosculp.csail.mit.edu
Societal Statement on the Role of Occupational Therapy with Survivors of Human Sex Trafficking in the United States
As part of a specialized course, OTD 8340 Wellness and Health Promotion in Occupational Therapy, students from the Nova Southeastern University Entry Level Doctor of Occupational Therapy program, drafted a Societal Statement on the role of occupational therapy with survivors of human sex trafficking in the United States. The students explored the issue of domestic human sex trafficking from an occupational perspective, under the guidance of their professor, Mirtha Montejo Whaley, PhD, OTR/L. As of the publication of this journal, the document is under review by the American Occupational Therapy Association (AOTA
An evaluation of membrane properties and process characteristics of a scaled-up pressure retarded osmosis (PRO) process
YesThis work presents a systematic evaluation of the membrane and process characteristics of a scaled-up pressure retarded osmosis (PRO). In order to meet pre-defined membrane economic viability ( ≥ 5 W/m2), different operating conditions and design parameters are studied with respect to the increase of the process scale, including the initial flow rates of the draw and feed solution, operating pressure, membrane permeability-selectivity, structural parameter, and the efficiency of the high-pressure pump (HP), energy recovery device (ERD) and hydro-turbine (HT). The numerical results indicate that the performance of the scaled-up PRO process is significantly dependent on the dimensionless flow rate. Furthermore, with the increase of the specific membrane scale, the accumulated solute leakage becomes important. The membrane to achieve the optimal performance moves to the low permeability in order to mitigate the reverse solute permeation. Additionally, the counter-current flow scheme is capable to increase the process performance with a higher permeable and less selectable membrane compared to the co-current flow scheme. Finally, the inefficiencies of the process components move the optimal APD occurring at a higher dimensionless flow rate to reduce the energy losses in the pressurization and at a higher specific membrane scale to increase energy generation
Integrating fluctuations into distribution of resources in transportation networks
We propose a resource distribution strategy to reduce the average travel time
in a transportation network given a fixed generation rate. Suppose that there
are essential resources to avoid congestion in the network as well as some
extra resources. The strategy distributes the essential resources by the
average loads on the vertices and integrates the fluctuations of the
instantaneous loads into the distribution of the extra resources. The
fluctuations are calculated with the assumption of unlimited resources, where
the calculation is incorporated into the calculation of the average loads
without adding to the time complexity. Simulation results show that the
fluctuation-integrated strategy provides shorter average travel time than a
previous distribution strategy while keeping similar robustness. The strategy
is especially beneficial when the extra resources are scarce and the network is
heterogeneous and lowly loaded.Comment: 14 pages, 4 figure
Spectroscopic studies of Dy-168,170 using CLARA and PRISMA
Preliminary results from an experiment aiming at Dy-170. Submitted to the LNL
Annual Report 2008.Comment: 2 pages, 4 figures, Submitted to the LNL Annual Report 200
High order optical sideband generation with Terahertz quantum cascade lasers
Optical sidebands are generated by difference frequency mixing between a resonant bandgap near-infrared beam and a terahertz (THz) wave. This is realized within the cavity of a THz quantum cascade laser using resonantly enhanced non-linearities. Multiple order optical sidebands and conversion efficiencies up to 0.1% are shown
Science Models as Value-Added Services for Scholarly Information Systems
The paper introduces scholarly Information Retrieval (IR) as a further
dimension that should be considered in the science modeling debate. The IR use
case is seen as a validation model of the adequacy of science models in
representing and predicting structure and dynamics in science. Particular
conceptualizations of scholarly activity and structures in science are used as
value-added search services to improve retrieval quality: a co-word model
depicting the cognitive structure of a field (used for query expansion), the
Bradford law of information concentration, and a model of co-authorship
networks (both used for re-ranking search results). An evaluation of the
retrieval quality when science model driven services are used turned out that
the models proposed actually provide beneficial effects to retrieval quality.
From an IR perspective, the models studied are therefore verified as expressive
conceptualizations of central phenomena in science. Thus, it could be shown
that the IR perspective can significantly contribute to a better understanding
of scholarly structures and activities.Comment: 26 pages, to appear in Scientometric
Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation
A role for WNT signalling in gastric carcinogenesis has been suggested due to two major observations. First, patients with germline mutations in adenomatous polyposis coli (APC) are susceptible to stomach polyps and second, in gastric cancer, WNT activation confers a poor prognosis. However, the functional significance of deregulated WNT signalling in gastric homoeostasis and cancer is still unclear. In this study we have addressed this by investigating the immediate effects of WNT signalling activation within the stomach epithelium. We have specifically activated the WNT signalling pathway within the mouse adult gastric epithelium via deletion of either glycogen synthase kinase 3 (GSK3) or APC or via expression of a constitutively active β-catenin protein. WNT pathway deregulation dramatically affects stomach homoeostasis at very short latencies. In the corpus, there is rapid loss of parietal cells with fundic gland polyp (FGP) formation and adenomatous change, which are similar to those observed in familial adenomatous polyposis. In the antrum, adenomas occur from 4 days post-WNT activation. Taken together, these data show a pivotal role for WNT signalling in gastric homoeostasis, FGP formation and adenomagenesis. Loss of the parietal cell population and corresponding FGP formation, an early event in gastric carcinogenesis, as well as antral adenoma formation are immediate effects of nuclear β-catenin translocation and WNT target gene expression. Furthermore, our inducible murine model will permit a better understanding of the molecular changes required to drive tumourigenesis in the stomach
CD28 between tolerance and autoimmunity: The side effects of animal models [version 1; referees: 2 approved]
Regulation of immune responses is critical for ensuring pathogen clearance and for preventing reaction against self-antigens. Failure or breakdown of immunological tolerance results in autoimmunity. CD28 is an important co-stimulatory receptor expressed on T cells that, upon specific ligand binding, delivers signals essential for full T-cell activation and for the development and homeostasis of suppressive regulatory T cells. Many in vivo mouse models have been used for understanding the role of CD28 in the maintenance of immune homeostasis, thus leading to the development of CD28 signaling modulators that have been approved for the treatment of some autoimmune diseases. Despite all of this progress, a deeper understanding of the differences between the mouse and human receptor is required to allow a safe translation of pre-clinical studies in efficient therapies. In this review, we discuss the role of CD28 in tolerance and autoimmunity and the clinical efficacy of drugs that block or enhance CD28 signaling, by highlighting the success and failure of pre-clinical studies, when translated to humans
- …
