506 research outputs found
Notes on dark energy interacting with dark matter and unparticle in loop quantum cosmology
We investigate the behavior of dark energy interacting with dark matter and
unparticle in the framework of loop quantum cosmology. In four toy models, we
study the interaction between the cosmic components by choosing different
coupling functions representing the interaction. We found that there are only
two attractor solutions namely dark energy dominated and dark matter dominated
Universe. The other two models are unstable, as they predict either a dark
energy filled Universe or one completely devoid of it.Comment: 9 pages, 10 figures. v2: Minor revisions, matches published versio
Empirical determination of charm quark energy loss and its consequences for azimuthal anisotropy
We propose an empirical model to determine the form of energy loss of charm
quarks due to multiple scatterings in quark gluon plasma by demanding a good
description of production of D mesons and non-photonic electrons in
relativistic collision of heavy nuclei at RHIC and LHC energies. Best results
are obtained when we approximate the momentum loss per collision , where is a constant depending on the
centrality and the centre of mass energy. Comparing our results with those
obtained earlier for drag coefficients estimated using Langevin equation for
heavy quarks we find that up to half of the energy loss of charm quarks at top
RHIC energy could be due to collisions while that at LHC energy at 2760 GeV/A
the collisional energy loss could be about one third of the total. Estimates
are obtained for azimuthal anisotropy in momentum spectra of heavy mesons, due
to this energy loss. We further suggest that energy loss of charm quarks may
lead to an enhanced production of D-mesons and single electrons at low in
AA collisions.Comment: 11 pages, 3 figures, Typographical errors corrected, Key-words and
PACS indices added, sequence of figures corrected, references added in
section 3, discussions expande
Origin of the Pseudogap in High-Temperature Cuprate Superconductors
Cuprate high-temperature superconductors exhibit a pseudogap in the normal
state that decreases monotonically with increasing hole doping and closes at x
\approx 0.19 holes per planar CuO2 while the superconducting doping range is
0.05 < x < 0.27 with optimal Tc at x \approx 0.16. Using ab initio quantum
calculations at the level that leads to accurate band gaps, we found that
four-Cu-site plaquettes are created in the vicinity of dopants. At x \approx
0.05 the plaquettes percolate, so that the Cu dx2y2/O p{\sigma} orbitals inside
the plaquettes now form a band of states along the percolating swath. This
leads to metallic conductivity and below Tc to superconductivity. Plaquettes
disconnected from the percolating swath are found to have degenerate states at
the Fermi level that split and lead to the pseudogap. The pseudogap can be
calculated by simply counting the spatial distribution of isolated plaquettes,
leading to an excellent fit to experiment. This provides strong evidence in
favor of inhomogeneous plaquettes in cuprates.Comment: 24 pages (4 pages main text plus 20 pages supplement
Methods and Compositions for Pigmented Self-Stratifying Coatings
A coating composition may include a polyol, a silsesquioxane, a polyurethane dendrimer, a crosslinker, and a pigment in contact with a dispersing agent. A process for preparing a coating composition is further disclosed including the step of contacting a polyol, a silsesquioxane, a polyurethane dendrimer, and a crosslinker to form a coating mixture dispersed within a solvent. The process further includes adding a pigment in contact with a dispersing agent to the coating mixture, and forming a self-stratifying coating having at least one layer, wherein the pigment resides substantially within one of the at least one layer
Model Independent Analysis of the Forward-Backward Asymmetry for the Decay
The sensitivity of the zero position of the forward backward asymmetry
for the exclusive
decay is examined by using most general non-standard 4-fermion interactions.
Our analysis shows that the zero position of the forward backward asymmetry is
very sensitive to the sign and size of the Wilson coefficients corresponding to
the new vector type interactions, which are the counter partners of the usual
Standard Model operators but have opposite chirality. In addition to these, the
other significant effect comes from the interference of Scalar-Pseudoscalar and
Tensor type operators. These results will not only enhance our theoretical
understanding about the axial vector mesons but will also serve as a good tool
to look for physics beyond the SM.Comment: 14 pages, 8 figures, Published version that appears in EPJ
Multi-objective optimization of energy consumption and surface quality in nanofluid SQCL assisted face milling
Considering the significance of improving the energy efficiency, surface quality and material removal quantity of machining processes, the present study is conducted in the form of an experimental investigation and a multi-objective optimization. The experiments were conducted by face milling AISI 1045 steel on a Computer Numerical Controlled (CNC) milling machine using a carbide cutting tool. The Cu-nano-fluid, dispersed in distilled water, was impinged in small quantity cooling lubrication (SQCL) spray applied to the cutting zone. The data of surface roughness and active cutting energy were measured while the material removal rate was calculated. A multi-objective optimization was performed by the integration of the Taguchi method, Grey Relational Analysis (GRA), and the Non-Dominated Sorting Genetic Algorithm (NSGA-II). The optimum results calculated were a cutting speed of 1200 rev/min, a feed rate of 320 mm/min, a depth of cut of 0.5 mm, and a width of cut of 15 mm. It was also endowed with a 20.7% reduction in energy consumption. Furthermore, the use of SQCL promoted sustainable manufacturing. The novelty of the work is in reducing energy consumption under nano fluid assisted machining while paying adequate attention to material removal quantity and the product’s surface quality
Waveguide Coupled Resonance Fluorescence from On-Chip Quantum Emitter
Resonantly driven quantum emitters offer a very promising route to obtain highly coherent sources of single photons required for applications in quantum information processing (QIP). Realizing this for on-chip scalable devices would be important for scientific advances and practical applications in the field of integrated quantum optics. Here we report on-chip quantum dot (QD) resonance fluorescence (RF) efficiently coupled into a single-mode waveguide, a key component of a photonic integrated circuit, with a negligible resonant laser background and show that the QD coherence is enhanced by more than a factor of 4 compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge dynamics are revealed in autocorrelation g(2) measurements. The potential for triggered operation is verified in pulsed RF. These results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with embedded resonantly driven quantum emitters
(m,n)-type holographic dark energy models
We construct -type holographic dark energy models at a
phenomenological level, which can be viewed as a generalization of agegraphic
models with the conformal-like age as the holographic characteristic size. For
some values of the holographic dark energy can automatically evolve
across into a phantom phase even without introducing an interaction
between the dark energy and background matter. Our construction is also
applicable to the holographic dark energy with generalized future event horizon
as the characteristic size. Finally, we address the issue on the stability of
our model and show that they are generally stable under the scalar
perturbation.Comment: 18 pages, no figure, Sec. 5 added, introduction and conclusion
improved, a reference added, some references updated, published in MPL
Multi-response optimisation of machining aluminium-6061 under eco-friendly electrostatic minimum quantity lubrication environment
The emerging grave consequences of conventional coolants on health, ecology and product quality, have pushed the scientific research to explore eco-friendly lubrication technique. Electrostatic minimum quantity lubrication (EMQL) has been underscored as a burgeoning technology to cut-down bete noire impacts in machining. This research confers the adoption of a negatively charged cold mist of air-castor oil employed in turning of aluminium-6061T6 material by varying the cutting conditions, as per experimental designed through response surface methodology (RSM). For comprehensive sagacity, a range of cutting speed, feed, depth of cut and EMQL-flow rate were considered. Material removal rate, tool life, surface roughness and power consumption of machine tool were adopted as performance measures. To satisfy multi-criterion simultaneously, RSM-based grey relational analysis (GRA) was employed for multi-objective optimisation. Highest proportion of grey relational grade (GRG) as a single desideratum response function, provided a trade-off between performance measures with 15.56% improvement in GRG
Crossing the Phantom divide line in the Chaplygin gas model
The role of the interaction in reaching and crossing the phantom divide line
in the Chaplygin gas model is discussed. We obtain some necessary properties of
the interaction that allow the model to arrive at or cross the phantom divide
line. We show that these properties put some conditions on the ratio of dark
matter to dark energy density in the present epoch.Comment: 12 pages, references updated, explanations added. To be published in
Phys. Lett.
- …
