729 research outputs found
Horizontal supergranule-scale motions inferred from TRACE ultraviolet observations of the chromosphere
We study horizontal supergranule-scale motions revealed by TRACE observation
of the chromospheric emission, and investigate the coupling between the
chromosphere and the underlying photosphere. A highly efficient
feature-tracking technique called balltracking has been applied for the first
time to the image sequences obtained by TRACE (Transition Region and Coronal
Explorer) in the passband of white light and the three ultraviolet passbands
centered at 1700 {\AA}, 1600 {\AA}, and 1550 {\AA}. The resulting velocity
fields have been spatially smoothed and temporally averaged in order to reveal
horizontal supergranule-scale motions that may exist at the emission heights of
these passbands. We find indeed a high correlation between the horizontal
velocities derived in the white-light and ultraviolet passbands. The horizontal
velocities derived from the chromospheric and photospheric emission are
comparable in magnitude. The horizontal motions derived in the UV passbands
might indicate the existence of a supergranule-scale magnetoconvection in the
chromosphere, which may shed new light on the study of mass and energy supply
to the corona and solar wind at the height of the chromosphere. However, it is
also possible that the apparent motions reflect the chromospheric brightness
evolution as produced by acoustic shocks which might be modulated by the
photospheric granular motions in their excitation process, or advected partly
by the supergranule-scale flow towards the network while propagating upward
from the photosphere. To reach a firm conclusion, it is necessary to
investigate the role of granular motions in the excitation of shocks through
numerical modeling, and future high-cadence chromospheric magnetograms must be
scrutinized.Comment: 5 figures, accepted by Astronomy & Astrophysic
Evidence for a hopping mechanism in metal|single molecule|metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy)₂] ²⁺ (M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine) in ionic liquid
Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths < ca. 4 nm, and that for longer molecules, coherence is lost as a hopping element becomes more significant. In this work we present evidence that, for a family of conjugated, redox-active metal complexes, hopping may be a significant factor for even the shortest molecule studied (ca. 1 nm between contact atoms). The length dependence of conductance for two series of such complexes which differ essentially in the number of conjugated 1,4-C₆H₄- rings in the structures has been studied, and it is found that the junction conductances vary linearly with molecular length, consistent with a hopping mechanism, whereas there is significant deviation from linearity in plots of log(conductance) vs. length that would be characteristic of tunnelling, and the slopes of the log(conductance)–length plots are much smaller than expected for an oligophenyl system. Moreover, the conductances of molecular junctions involving the redox–active molecules, [M(pyterpy)₂] ²⁺/³⁺ (M = Co, Fe) have been studied as a function of electrochemical potential in ionic liquid electrolyte, and the conductance–overpotential relationship is found to fit well with the Kuznetsov–Ulstrup relationship, which is essentially a hopping description
Ammonium 4-(4-carboxyphenoxy)benzoate
The anions of the title salt, NH4
+·HO2CC6H4–O–C6H4CO2
−, are linked by intermolecular –CO2H⋯O2C– hydrogen bonds, forming a polyanionic chain in the crystal; adjacent chains are connected through the ammonium cation into a layer structure, with the ammonium cation serving as hydrogen-bond donor to four carboxylate O atoms. The cation and anion both lie on special positions of 2 site symmetry. In the anion, the rings make a dihedral angle of 65.3 (1)°. The acid H atom is disordered about the special position
The effect of graphite and carbon black ratios on conductive ink performance
Conductive inks based on graphite and carbon black are used in a host of applications including energy storage, energy harvesting, electrochemical sensors and printed heaters. This requires accurate control of electrical properties tailored to the application; ink formulation is a fundamental element of this. Data on how formulation relates to properties have tended to apply to only single types of conductor at any time, with data on mixed types of carbon only empirical thus far. Therefore, screen printable carbon inks with differing graphite, carbon black and vinyl polymer content were formulated and printed to establish the effect on rheology, deposition and conductivity. The study found that at a higher total carbon loading ink of 29.4% by mass, optimal conductivity (0.029 Ω cm) was achieved at a graphite to carbon black ratio of 2.6 to 1. For a lower total carbon loading (21.7 mass %), this ratio was reduced to 1.8 to 1. Formulation affected viscosity and hence ink transfer and also surface roughness due to retention of features from the screen printing mesh and the inherent roughness of the carbon components, as well as the ability of features to be reproduced consistently
Indonesian Throughflow drove Australian climate form humid Pliocene to arid Pleistocene
Late Miocene to mid-Pleistocene sedimentary proxy records reveal that northwest Australia underwent an abrupt transition from dry to humid climate conditions at 5.5 million years (Ma), likely receiving year-round rainfall, but after ~3.3 Ma, climate shifted toward an increasingly seasonal precipitation regime. The progressive constriction of the Indonesian Throughflow likely decreased continental humidity and transferred control of northwest Australian climate from the Pacific to the Indian Ocean, leading to drier conditions punctuated by monsoonal precipitation. The northwest dust pathway and fully established seasonal and orbitally controlled precipitation were in place by ~2.4 Ma, well after the intensification of Northern Hemisphere glaciation. The transition from humid to arid conditions was driven by changes in Pacific and Indian Ocean circulation and regional atmospheric moisture transport, influenced by the emerging Maritime Continent. We conclude that the Maritime Continent is the switchboard modulating teleconnections between tropical and high-latitude climate systems.published_or_final_versio
Distinct cell proliferation events during abstinence after alcohol dependence: Microglia proliferation precedes neurogenesis
Excessive alcohol intake characteristic of Alcohol Use Disorders (AUDs) produces neurodegeneration that may recover with abstinence. The mechanism of regeneration is unclear, however neurogenesis from neural stem/progenitor cells is a feasible mechanism of structural plasticity. Therefore, a timecourse of cell proliferation was examined in a rat model of an AUD and showed a striking burst in cell proliferation at 2 days of abstinence preceding the previously reported neurogenic proliferation at 7 days. New cells at 2 days, assessed by Bromo-deoxy-Uridine incorporation and endogenous markers, were observed throughout hippocampus and cortex. Although the majority of these new cells did not become neurons, neurogenesis was not altered at this specific timepoint. These new cells expressed a microglia specific marker, Iba-1, and survived at least 2 months. This first report of microglia proliferation in a model of an AUD suggests that microgliosis could contribute to volume recovery in non-neurogenic regions during abstinence
Long non-coding RNAs and cancer: a new frontier of translational research?
Author manuscriptTiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.RS is supported as a fellow of the TALENTS Programme (7th R&D Framework Programme, Specific Programme: PEOPLE—Marie Curie Actions—COFUND). MIA is supported as a PhD fellow of the FCT (Fundação para a Ciência e Tecnologia), Portugal. GAC is supported as a fellow by The University of Texas MD Anderson Cancer Center Research Trust, as a research scholar by The University of Texas System Regents, and by the Chronic Lymphocytic Leukemia Global Research Foundation. Work in GAC’s laboratory is supported in part by the NIH/ NCI (CA135444); a Department of Defense Breast Cancer Idea Award; Developmental Research Awards from the Breast Cancer, Ovarian Cancer, Brain Cancer, Multiple Myeloma and Leukemia Specialized Programs of Research Excellence (SPORE) grants from the National Institutes of Health; a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant; the Laura and John Arnold Foundation and the RGK Foundation
Graphene-Based Nanocomposites for Energy Storage
Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed
Mapping the Increasing Use of LLMs in Scientific Papers
Scientific publishing lays the foundation of science by disseminating
research findings, fostering collaboration, encouraging reproducibility, and
ensuring that scientific knowledge is accessible, verifiable, and built upon
over time. Recently, there has been immense speculation about how many people
are using large language models (LLMs) like ChatGPT in their academic writing,
and to what extent this tool might have an effect on global scientific
practices. However, we lack a precise measure of the proportion of academic
writing substantially modified or produced by LLMs. To address this gap, we
conduct the first systematic, large-scale analysis across 950,965 papers
published between January 2020 and February 2024 on the arXiv, bioRxiv, and
Nature portfolio journals, using a population-level statistical framework to
measure the prevalence of LLM-modified content over time. Our statistical
estimation operates on the corpus level and is more robust than inference on
individual instances. Our findings reveal a steady increase in LLM usage, with
the largest and fastest growth observed in Computer Science papers (up to
17.5%). In comparison, Mathematics papers and the Nature portfolio showed the
least LLM modification (up to 6.3%). Moreover, at an aggregate level, our
analysis reveals that higher levels of LLM-modification are associated with
papers whose first authors post preprints more frequently, papers in more
crowded research areas, and papers of shorter lengths. Our findings suggests
that LLMs are being broadly used in scientific writings
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
- …
