3,576 research outputs found

    Plant responses to photoperiod

    Get PDF
    Photoperiod controls many developmental responses in animals, plants and even fungi. The response to photoperiod has evolved because daylength is a reliable indicator of the time of year, enabling developmental events to be scheduled to coincide with particular environmental conditions. Much progress has been made towards understanding the molecular mechanisms involved in the response to photoperiod in plants. These mechanisms include the detection of the light signal in the leaves, the entrainment of circadian rhythms, and the production of a mobile signal which is transmitted throughout the plant. Flowering, tuberization and bud set are just a few of the many different responses in plants that are under photoperiodic control. Comparison of what is known of the molecular mechanisms controlling these responses shows that, whilst common components exist, significant differences in the regulatory mechanisms have evolved between these responses

    Activated mouse CD4+Foxp3CD4^+Foxp3^− T cells facilitate melanoma metastasis via Qa-1-dependent suppression of NK-cell cytotoxicity

    Get PDF
    The regulatory activities of mouse CD4+Foxp3+CD^4+Foxp3^+ T cells on various immune cells, including NK cells, have been well documented. Under some conditions, conventional CD4+Foxp3CD4^+Foxp3^− T cells in the periphery are able to acquire inhibitory function on other T cells, but their roles in controlling innate immune cells are poorly defined. As a potential cellular therapy for cancer, ex vivo activated CD4+Foxp3CD4^+Foxp3^− effector T cells are often infused back in vivo to suppress tumor growth and metastasis. Whether such activated T cells could affect NK-cell control of tumorigenesis is unclear. In the present study, we found that mitogen-activated CD4+Foxp3CD4^+Foxp3^− T cells exhibited potent suppressor function on NK-cell proliferation and cytotoxicity in vitro, and notably facilitated B16 melanoma metastasis in vivo. Suppression of NK cells by activated CD4+Foxp3CD4^+Foxp3^− T cells is cell-cell contact dependent and is mediated by Qa-1:NKG2A interaction, as administration of antibodies blocking either Qa-1 or NKG2A could completely reverse this suppression, and significantly inhibited otherwise facilitated melanoma metastasis. Moreover, activated CD4+Foxp3CD4^+Foxp3^− cells from Qa-1 knockout mice completely lost the suppressor activity on NK cells, and failed to facilitate melanoma metastasis when transferred in vivo. Taken together, our findings indicate that innate anti-tumor response is counter regulated by the activation of adaptive immunity, a phenomenon we term as “activation-induced inhibition”. Thus, the regulatory role of activated CD4+Foxp3CD4^+Foxp3^− T cells in NK-cell activity must be taken into consideration in the future design of cancer therapies

    A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation

    Get PDF
    Execution of pluripotency requires progression from the naive status represented by mouse embryonic stem cells (ESCs) to a state capacitated for lineage specification. This transition is coordinated at multiple levels. Non-coding RNAs may contribute to this regulatory orchestra. We identified a rodent-specific long non-coding RNA (lncRNA) linc1281, hereafter Ephemeron (Eprn), that modulates the dynamics of exit from naive pluripotency. Eprn deletion delays the extinction of ESC identity, an effect associated with perduring Nanog expression. In the absence of Eprn, Lin28a expression is reduced which results in persistence of let-7 microRNAs, and the up-regulation of de novo methyltransferases Dnmt3a/b is delayed. Dnmt3a/b deletion retards ES cell transition, correlating with delayed Nanog promoter methylation and phenocopying loss of Eprn or Lin28a. The connection from lncRNA to miRNA and DNA methylation facilitates the acute extinction of naive pluripotency, a pre-requisite for rapid progression from preimplantation epiblast to gastrulation in rodents. Eprn illustrates how lncRNAs may introduce species-specific network modulations

    Using social cognitive career theory to understand why students choose to study computer science

    Get PDF
    The aim of this research is to use Social Cognitive Career Theory (SCCT) to identify and understand reasons why students choose to study Computer Science (CS) at university. SCCT focuses on students’ prior experience, social support, self-efficacy and outcome expectation. The research is part motivated by the desire to increase female participation rates in CS, particularly in the UK. Policymakers can use the factors that both females and males identify as influencing their choice of studying CS to enhance the experiences of all students prior to coming to university, but female students in particular. The study uses a semi-structured interview with 17 mixed gender subjects currently studying CS at three Scottish universities. The findings are that social support from family, teachers, friends and mentors is a particularly important factor in choosing to study CS, especially for female subjects. The career paths offered by a CS degree is another major factor, not just the potential jobs, but also the general value of a CS education and the potential to make useful contributions to society. School education appeared to have limited influence, though exposure to problem solving, programming, online self-learning and internships are positive influences. The stereotypical view of CS students as ‘geeks’ is outdated and unhelpful – it is more appropriate to see them as ‘analytical’ or ‘over-achievers’. Subjects make many suggestions for improving the CS education provided at school, especially to make it more attractive to females, including: make it compulsory, teach it earlier, include more programming and problem solving, and increase the visibility of female exemplars and role models

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    corecore