7,860 research outputs found
Generalized Completed Local Binary Patterns for Time-Efficient Steel Surface Defect Classification
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.Efficient defect classification is one of the most important preconditions to achieve online quality inspection for hot-rolled strip steels. It is extremely challenging owing to various defect appearances, large intraclass variation, ambiguous interclass distance, and unstable gray values. In this paper, a generalized completed local binary patterns (GCLBP) framework is proposed. Two variants of improved completed local binary patterns (ICLBP) and improved completed noise-invariant local-structure patterns (ICNLP) under the GCLBP framework are developed for steel surface defect classification. Different from conventional local binary patterns variants, descriptive information hidden in nonuniform patterns is innovatively excavated for the better defect representation. This paper focuses on the following aspects. First, a lightweight searching algorithm is established for exploiting the dominant nonuniform patterns (DNUPs). Second, a hybrid pattern code mapping mechanism is proposed to encode all the uniform patterns and DNUPs. Third, feature extraction is carried out under the GCLBP framework. Finally, histogram matching is efficiently accomplished by simple nearest-neighbor classifier. The classification accuracy and time efficiency are verified on a widely recognized texture database (Outex) and a real-world steel surface defect database [Northeastern University (NEU)]. The experimental results promise that the proposed method can be widely applied in online automatic optical inspection instruments for hot-rolled strip steel.Peer reviewe
Unmodified Gravity
By relaxing the conventional assumption of a purely gravitational interaction
between dark energy and dark matter, substantial alterations to the growth of
cosmological structure can occur. In this work we focus on the homogeneous
transfer of energy from a decaying form of dark energy. We present simple
analytic solutions to the modified growth rates of matter fluctuations in these
models, and demonstrate that neglecting physics within the dark sector may
induce a significant bias in the inferred growth rate, potentially offering a
false signature of modified gravity.Comment: 7 pages, 5 figures, new eq (7), changes reflect published versio
Breaking parameter degeneracy in interacting dark energy models from observations
We study the interacting dark energy model with time varying dark energy
equation of state. We examine the stability in the perturbation formalism and
the degeneracy among the coupling between dark sectors, the time-dependent dark
energy equation of state and dark matter abundance in the cosmic microwave
background radiation. Further we discuss the possible ways to break such
degeneracy by doing global fitting using the latest observational data and we
get a tight constraint on the interaction between dark sectors.Comment: 8 pages, 6 figures, accepted for publication in Phys.Lett.
Colloidal hydrodynamic coupling in concentric optical vortices
Optical vortex traps created from helical modes of light can drive
fluid-borne colloidal particles in circular trajectories. Concentric
circulating rings of particles formed by coaxial optical vortices form a
microscopic Couette cell, in which the amount of hydrodynamic drag experienced
by the spheres depends on the relative sense of the rings' circulation.
Tracking the particles' motions makes possible measurements of the hydrodynamic
coupling between the circular particle trains and addresses recently proposed
hydrodynamic instabilities for collective colloidal motions on optical
vortices.Comment: 7 pages, 2 figures, submitted to Europhysics Letter
Optical alignment and spinning of laser-trapped microscopic particles
Light-induced rotation of absorbing microscopic particles by transfer of
angular momentum from light to the material raises the possibility of optically
driven micromachines. The phenomenon has been observed using elliptically
polarized laser beams or beams with helical phase structure. But it is
difficult to develop high power in such experiments because of overheating and
unwanted axial forces, limiting the achievable rotation rates to a few hertz.
This problem can in principle be overcome by using transparent particles,
transferring angular momentum by a mechanism first observed by Beth in 1936,
when he reported a tiny torque developed in a quartz waveplate due to the
change in polarization of transmitted light. Here we show that an optical
torque can be induced on microscopic birefringent particles of calcite held by
optical tweezers. Depending on the polarization of the incident beam, the
particles either become aligned with the plane of polarization (and thus can be
rotated through specified angles) or spin with constant rotation frequency.
Because these microscopic particles are transparent, they can be held in
three-dimensional optical traps at very high power without heating. We have
observed rotation rates in excess of 350 Hz.Comment: 4 pages, 4 figure
Processing carbon nanotubes with holographic optical tweezers
We report the first demonstration that carbon nanotubes can be trapped and
manipulated by optical tweezers. This observation is surprising because
individual nanotubes are substantially smaller than the wavelength of light,
and thus should not be amenable to optical trapping. Even so, nanotube bundles,
and perhaps even individual nanotubes, can be transported at high speeds,
deposited onto substrates, untangled, and selectively ablated, all with visible
light. The use of holographic optical tweezers, capable of creating hundreds of
independent traps simultaneously, suggests opportunities for highly parallel
nanotube processing with light.Comment: 3 pages, 1 figur
Microoptomechanical pumps assembled and driven by holographic optical vortex arrays
Beams of light with helical wavefronts can be focused into ring-like optical
traps known as optical vortices. The orbital angular momentum carried by
photons in helical modes can be transferred to trapped mesoscopic objects and
thereby coupled to a surrounding fluid. We demonstrate that arrays of optical
vortices created with the holographic optical tweezer technique can assemble
colloidal spheres into dynamically reconfigurable microoptomechanical pumps
assembled by optical gradient forces and actuated by photon orbital angular
momentum.Comment: 4 pages, 3 figures, submitted to Optics Expres
Nonmethane hydrocarbon measurements in the North Atlantic Flight Corridor during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment
Mixing ratios of nonmethane hydrocarbons (NMHCs) were not enhanced in whole air samples collected within the North Atlantic Flight Corridor (NAFC) during the fall of 1997. The investigation was conducted aboard NASA's DC-8 research aircraft, as part of the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX). NMHC enhancements were not detected within the general organized tracking system of the NAFC, nor during two tail chases of the DC-8's own exhaust. Because positive evidence of aircraft emissions was demonstrated by enhancements in both nitrogen oxides and condensation nuclei during SONEX, the NMHC results suggest that the commercial air traffic fleet operating in the North Atlantic region does not contribute at all or contributes negligibly to NMHCs in the NAFC. Copyright 2000 by the American Geophysical Union
Recommended from our members
Photochemical production and evolution of selected C2-C5 alkyl nitrates in tropospheric air influenced by Asian outflow
The photochemical production and evolution of six C2-C5 alkyl nitrates (ethyl-, 1-propyl-, 2-propyl-, 2-butyl-, 2-pentyl-, and 3-pentyl nitrate) was investigated using selected data from 5500 whole air samples collected downwind of Asia during the airborne Transport and Chemical Evolution over the Pacific (TRACE-P) field campaign (February-April 2001). Air mass age was important for selecting appropriate field data to compare with laboratory predictions of C5 alkyl nitrate production rates. In young, highly polluted air masses, the ratio between the production rates of 3-pentyl nitrate and 2-pentyl nitrate from n-pentane was 0.60-0.65. These measured ratios show excellent agreement with results from a field study in Germany (0.63 ± 0.06), and they agree better with predicted ratios from older laboratory kinetic studies (0.63-0.66) than with newer laboratory results (0.73 ± 0.08). TRACE-P samples that did not show influence from marine alkyl nitrate sources were used to investigate photochemical alkyl nitrate evolution. Relative to 2-butyl nitrate/n-butane, the measured ratios of ethyl nitrate/ethane and 2-propyl nitrate/propane showed notable deviations from modeled values based on laboratory kinetic data, suggesting additional Asian sources of their alkyl peroxy radical precursors. By contrast, the measured ratios of 1-propyl-, 2-pentyl-, and 3-pentyl nitrate to their respective parent hydrocarbons were fairly close to modeled values. The 1-propyl nitrate findings contrast with field studies in North America, and suggest that air downwind of Asia was not significantly impacted by additional 1-propyl nitrate precursors. The sensitivity of modeled photochemical processing times to hydroxyl radical concentration, altitude, city ventilation times, and dilution is discussed
- …
