4,662 research outputs found
Spatially Varying Steady State Longitudinal Magnetization in Distant Dipolar Field-based Sequences
Sequences based on the Distant Dipolar Field (DDF) have shown great promise
for novel spectroscopy and imaging. Unless spatial variation in the
longitudinal magnetization, M_{z}(s), is eliminated by relaxation, diffusion,
or spoiling techniques by the end of a single repetition, unexpected results
can be obtained due to spatial harmonics in the steady state M_{z}^{SS}(s)
profile. This is true even in a homogeneous single-component sample. We have
developed an analytical expression for the M_{z}^{SS}(s) profile that occurs in
DDF sequences when smearing by diffusion is negligible in the TR period. The
expression has been verified by directly imaging the M_{z}^{SS}(s) profile
after establishing the steady state. more keywords: magnetic resonance,
intermolecular multiple quantum coherence, mesoscale structure, iMQC, DDFComment: 7 pages, 4 figures, submitted to Journal of Magnetic Resonanc
Generating Adversarial Examples with Adversarial Networks
Deep neural networks (DNNs) have been found to be vulnerable to adversarial
examples resulting from adding small-magnitude perturbations to inputs. Such
adversarial examples can mislead DNNs to produce adversary-selected results.
Different attack strategies have been proposed to generate adversarial
examples, but how to produce them with high perceptual quality and more
efficiently requires more research efforts. In this paper, we propose AdvGAN to
generate adversarial examples with generative adversarial networks (GANs),
which can learn and approximate the distribution of original instances. For
AdvGAN, once the generator is trained, it can generate adversarial
perturbations efficiently for any instance, so as to potentially accelerate
adversarial training as defenses. We apply AdvGAN in both semi-whitebox and
black-box attack settings. In semi-whitebox attacks, there is no need to access
the original target model after the generator is trained, in contrast to
traditional white-box attacks. In black-box attacks, we dynamically train a
distilled model for the black-box model and optimize the generator accordingly.
Adversarial examples generated by AdvGAN on different target models have high
attack success rate under state-of-the-art defenses compared to other attacks.
Our attack has placed the first with 92.76% accuracy on a public MNIST
black-box attack challenge.Comment: Accepted to IJCAI201
Impacts of climate change on TN load and its control in a River Basin with complex pollution sources
It is increasingly recognized that climate change could affect the quality of water through complex natural and anthropogenic mechanisms. Previous studies on climate change and water quality have mostly focused on assessing its impact on pollutant loads from agricultural runoff. A sub-daily SWAT model was developed to simulate the discharge, transport, and transformation of nitrogen from all known anthropogenic sources including industries, municipal sewage treatment plants, concentrated and scattered feedlot operations, rural households, and crop production in the Upper Huai River Basin. This is a highly polluted basin with total nitrogen (TN) concentrations frequently exceeding Class V of the Chinese Surface Water Quality Standard (GB3838-2002). Climate change projections produced by 16 Global Circulation Models (GCMs) under the RCP 4.5 and RCP 8.5 scenarios in the mid (2040–2060) and late (2070–2090) century were used to drive the SWAT model to evaluate the impacts of climate change on both the TN loads and the effectiveness of three water pollution control measures (reducing fertilizer use, constructing vegetative filter strips, and improving septic tank performance) in the basin. SWAT simulation results have indicated that climate change is likely to cause an increase in both monthly average and extreme TN loads in February, May, and November. The projected impact of climate change on TN loads in August is more varied between GCMs. In addition, climate change is projected to have a negative impact on the effectiveness of septic tanks in reducing TN loads, while its impacts on the other two measures are more uncertain. Despite the uncertainty, reducing fertilizer use remains the most effective measure for reducing TN loads under different climate change scenarios. Meanwhile, improving septic tank performance is relatively more effective in reducing annual TN loads, while constructing vegetative filter strips is more effective in reducing annual maximum monthly TN loads
A first-principles study of oxygen vacancy pinning of domain walls in PbTiO3
We have investigated the interaction of oxygen vacancies and 180-degree
domain walls in tetragonal PbTiO3 using density-functional theory. Our
calculations indicate that the vacancies do have a lower formation energy in
the domain wall than in the bulk, thereby confirming the tendency of these
defects to migrate to, and pin, the domain walls. The pinning energies are
reported for each of the three possible orientations of the original Ti-O-Ti
bonds, and attempts to model the results with simple continuum models are
discussed.Comment: 8 pages, with 3 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/lh_dw/index.htm
Revisiting Frank–Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr) in a length-dependent fashion
Force and power in cardiac muscle have a known dependence on phosphorylation of the myosin-associated regulatory light chain (RLC). We explore the effect of RLC phosphorylation on the ability of cardiac preparations to redevelop force (ktr ) in maximally activating [Ca2+ ]. Activation was achieved by rapidly increasing the temperature (temperature-jump of 0.5-20ºC) of permeabilized trabeculae over a physiological range of sarcomere lengths (1.85-1.94 μm). The trabeculae were subjected to shortening ramps over a range of velocities and the extent of RLC phosphorylation was varied. The latter was achieved using an RLC-exchange technique, which avoids changes in the phosphorylation level of other proteins. The results show that increasing RLC phosphorylation by 50% accelerates ktr by ∼50%, irrespective of the sarcomere length, whereas decreasing phosphorylation by 30% slows ktr by ∼50%, relative to the ktr obtained for in vivo phosphorylation. Clearly, phosphorylation affects the magnitude of ktr following step shortening or ramp shortening. Using a two-state model, we explore the effect of RLC phosphorylation on the kinetics of force development, which proposes that phosphorylation affects the kinetics of both attachment and detachment of cross-bridges. In summary, RLC phosphorylation affects the rate and extent of force redevelopment. These findings were obtained in maximally activated muscle at saturating [Ca2+ ] and are not explained by changes in the Ca2+ -sensitivity of acto-myosin interactions. The length-dependence of the rate of force redevelopment, together with the modulation by the state of RLC phosphorylation, suggests that these effects play a role in the Frank-Starling law of the heart.Published versio
- …
