134 research outputs found

    Observation of the Y(4140)Y(4140) structure in the J/ψϕJ/\psi\,\phi Mass Spectrum in B±J/ψϕKB^\pm\to J/\psi\,\phi K cays

    Get PDF
    The observation of the Y(4140)Y(4140) structure in B±J/ψϕK±B^\pm\rightarrow J/\psi\,\phi K^\pm decays produced in pˉp\bar{p} p collisions at \sqrt{s}=1.96~\TeV is reported with a statistical significance greater than 5 standard deviations. A fit to the J/ψϕJ/\psi\,\phi mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of 195+619^{+6}_{-5} resonance events, and resonance mass and width of 4143.4^{+2.9}_{-3.0}(\mathrm{stat})\pm0.6(\mathrm{syst})~\MeVcc and 15.3^{+10.4}_{-6.1}(\mathrm{stat})\pm2.5(\mathrm{syst})~\MeVcc respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.Comment: 7 pages, 2 figures, submited to Phys. Rev. Let

    Search for Higgs bosons produced in association with b quarks

    Get PDF
    We present a search for neutral Higgs bosons decaying into bb̄, produced in association with b quarks in pp̄ collisions. This process could be observable in supersymmetric models with high values of tanβ. The event sample corresponds to 2.6fb -1 of integrated luminosity collected with the CDF II detector at the Fermilab Tevatron collider. We search for an enhancement in the mass of the two leading jets in events with three jets identified as coming from b quarks using a displaced vertex algorithm. A data-driven procedure is used to estimate the dijet mass spectrum of the nonresonant multijet background. The contributions of backgrounds and a possible Higgs boson signal are determined by a two-dimensional fit of the data, using the dijet mass together with an additional variable which is sensitive to the flavor composition of the three tagged jets. We set mass-dependent limits on σ(pp̄→)×B(→bb̄) which are applicable for a narrow scalar particle produced in association with b quarks. We also set limits on tanβ in supersymmetric Higgs models including the effects of the Higgs boson width. © 2012 American Physical Society

    Search for Charged Higgs Bosons in Decays of Top Quarks in pp Collisions at s=1.96 TeV

    Get PDF
    We report on the first direct search for charged Higgs bosons decaying into cs in tt events produced by pp collisions at s=1.96 TeV. The search uses a data sample corresponding to an integrated luminosity of 2.2 fb(-1) collected by the CDF II detector at Fermilab and looks for a resonance in the invariant mass distribution of two jets in the lepton+jets sample of tt candidates. We observe no evidence of charged Higgs bosons in top quark decays. Hence, 95% upper limits on the top quark decay branching ratio are placed at B(t -> H(+)b) cs)=1.0. The upper limits on B(t -> H(+)b) are also used as model-independent limits on the decay branching ratio of top quarks to generic scalar charged bosons beyond the standard model.We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.Peer reviewe

    Plantas medicinais de um remascente de Floresta Ombrófila Mista Altomontana, Urupema, Santa Catarina, Brasil

    Full text link

    Teas and tea-based functional beverages

    Full text link

    The neuronal code(s) of the cerebellum

    No full text
    Understanding how neurons encode information in sequences of action potentials is of fundamental importance to neuroscience. The cerebellum is widely recognized for its involvement in the coordination of movements, which requires muscle activation patterns to be controlled with millisecond precision. Understanding how cerebellar neurons accomplish such high temporal precision is critical to understanding cerebellar function. Inhibitory Purkinje cells, the only output neurons of the cerebellar cortex, and their postsynaptic target neurons in the cerebellar nuclei, fire action potentials at high, sustained frequencies, suggesting spike rate modulation as a possible code. Yet, millisecond precise spatiotemporal spike activity patterns in Purkinje cells and inferior olivary neurons have also been observed. These results and ongoing studies suggest that the neuronal code used by cerebellar neurons may span a wide time scale from millisecond precision to slow rate modulations, likely depending on the behavioral context

    Sbk2, a Newly Discovered Atrium-Enriched Regulator of Sarcomere Integrity

    No full text
    Background: Heart development relies on tight spatiotemporal control of cardiac gene expression. Genes involved in this intricate process have been identified using animals and pluripotent stem cell-based models of cardio(myo)genesis. Recently, the repertoire of cardiomyocyte differentiation models has been expanded with iAM-1, a monoclonal line of conditionally immortalized neonatal rat atrial myocytes (NRAMs), which allows toggling between proliferative and differentiated (ie, excitable and contractile) phenotypes in a synchronized and homogenous manner. Methods: In this study, the unique properties of conditionally immortalized NRAMs (iAMs) were exploited to identify and characterize (lowly expressed) genes with an as-of-yet uncharacterized role in cardiomyocyte differentiation. Results: Transcriptome analysis of iAM-1 cells at different stages during one cycle of differentiation and subsequent dedifferentiation identified approximate to 13 000 transcripts, of which the dynamic changes in expression upon cardiomyogenic differentiation mostly opposed those during dedifferentiation. Among the genes whose expression increased during differentiation and decreased during dedifferentiation were many with known (lineage-specific) functions in cardiac muscle formation. Filtering for cardiac-enriched low-abundance transcripts, identified multiple genes with an uncharacterized role during cardio(myo)genesis including Sbk2 (SH3 domain binding kinase family member 2). Sbk2 encodes an evolutionarily conserved putative serine/threonine protein kinase, whose expression is strongly up- and downregulated during iAM-1 cell differentiation and dedifferentiation, respectively. In neonatal and adult rats, the protein is muscle-specific, highly atrium-enriched, and localized around the A-band of cardiac sarcomeres. Knockdown of Sbk2 expression caused loss of sarcomeric organization in NRAMs, iAMs and their human counterparts, consistent with a decrease in sarcomeric gene expression as evinced by transcriptome and proteome analyses. Interestingly, co-immunoprecipitation using Sbk2 as bait identified possible interaction partners with diverse cellular functions (translation, intracellular trafficking, cytoskeletal organization, chromatin modification, sarcomere formation). Conclusions: iAM-1 cells are a relevant and suitable model to identify (lowly expressed) genes with a hitherto unidentified role in cardiomyocyte differentiation as exemplified by Sbk2: a regulator of atrial sarcomerogenesis.Development and application of statistical models for medical scientific researc

    Sbk2, a Newly Discovered Atrium-Enriched Regulator of Sarcomere Integrity

    No full text
    Background: Heart development relies on tight spatiotemporal control of cardiac gene expression. Genes involved in this intricate process have been identified using animals and pluripotent stem cell-based models of cardio(myo)genesis. Recently, the repertoire of cardiomyocyte differentiation models has been expanded with iAM-1, a monoclonal line of conditionally immortalized neonatal rat atrial myocytes (NRAMs), which allows toggling between proliferative and differentiated (ie, excitable and contractile) phenotypes in a synchronized and homogenous manner. Methods: In this study, the unique properties of conditionally immortalized NRAMs (iAMs) were exploited to identify and characterize (lowly expressed) genes with an as-of-yet uncharacterized role in cardiomyocyte differentiation. Results: Transcriptome analysis of iAM-1 cells at different stages during one cycle of differentiation and subsequent dedifferentiation identified approximate to 13 000 transcripts, of which the dynamic changes in expression upon cardiomyogenic differentiation mostly opposed those during dedifferentiation. Among the genes whose expression increased during differentiation and decreased during dedifferentiation were many with known (lineage-specific) functions in cardiac muscle formation. Filtering for cardiac-enriched low-abundance transcripts, identified multiple genes with an uncharacterized role during cardio(myo)genesis including Sbk2 (SH3 domain binding kinase family member 2). Sbk2 encodes an evolutionarily conserved putative serine/threonine protein kinase, whose expression is strongly up- and downregulated during iAM-1 cell differentiation and dedifferentiation, respectively. In neonatal and adult rats, the protein is muscle-specific, highly atrium-enriched, and localized around the A-band of cardiac sarcomeres. Knockdown of Sbk2 expression caused loss of sarcomeric organization in NRAMs, iAMs and their human counterparts, consistent with a decrease in sarcomeric gene expression as evinced by transcriptome and proteome analyses. Interestingly, co-immunoprecipitation using Sbk2 as bait identified possible interaction partners with diverse cellular functions (translation, intracellular trafficking, cytoskeletal organization, chromatin modification, sarcomere formation). Conclusions: iAM-1 cells are a relevant and suitable model to identify (lowly expressed) genes with a hitherto unidentified role in cardiomyocyte differentiation as exemplified by Sbk2: a regulator of atrial sarcomerogenesis
    corecore