8,793 research outputs found
Physics-based analysis of Affymetrix microarray data
We analyze publicly available data on Affymetrix microarrays spike-in
experiments on the human HGU133 chipset in which sequences are added in
solution at known concentrations. The spike-in set contains sequences of
bacterial, human and artificial origin. Our analysis is based on a recently
introduced molecular-based model [E. Carlon and T. Heim, Physica A 362, 433
(2006)] which takes into account both probe-target hybridization and
target-target partial hybridization in solution. The hybridization free
energies are obtained from the nearest-neighbor model with experimentally
determined parameters. The molecular-based model suggests a rescaling that
should result in a "collapse" of the data at different concentrations into a
single universal curve. We indeed find such a collapse, with the same
parameters as obtained before for the older HGU95 chip set. The quality of the
collapse varies according to the probe set considered. Artificial sequences,
chosen by Affymetrix to be as different as possible from any other human genome
sequence, generally show a much better collapse and thus a better agreement
with the model than all other sequences. This suggests that the observed
deviations from the predicted collapse are related to the choice of probes or
have a biological origin, rather than being a problem with the proposed model.Comment: 11 pages, 10 figure
Ferromagnetic planar Josephson junction with transparent interfaces: a {\phi} junction proposal
We calculate the current phase relation of a planar Josephson junction with a
ferromagnetic weak link located on top of a thin normal metal film. Following
experimental observations we assume transparent superconductor-ferromagnet
interfaces. This provides the best interlayer coupling and a low suppression of
the superconducting correlations penetrating from the superconducting
electrodes into the ferromagnetic layer. We show that this Josephson junction
is a promising candidate for an experimental {\phi} junction realization.Comment: References update
Langzeitergebnisse nach erfolgloser Lyse und sekundärer Thrombektomie tiefer Bein-Beckenvenenthrombosen: eine kritische Analyse
Effective affinities in microarray data
In the past couple of years several studies have shown that hybridization in
Affymetrix DNA microarrays can be rather well understood on the basis of simple
models of physical chemistry. In the majority of the cases a Langmuir isotherm
was used to fit experimental data. Although there is a general consensus about
this approach, some discrepancies between different studies are evident. For
instance, some authors have fitted the hybridization affinities from the
microarray fluorescent intensities, while others used affinities obtained from
melting experiments in solution. The former approach yields fitted affinities
that at first sight are only partially consistent with solution values. In this
paper we show that this discrepancy exists only superficially: a sufficiently
complete model provides effective affinities which are fully consistent with
those fitted to experimental data. This link provides new insight on the
relevant processes underlying the functioning of DNA microarrays.Comment: 8 pages, 6 figure
- …
