4,644 research outputs found
Strengthening the Effectiveness of Pedestrian Detection with Spatially Pooled Features
We propose a simple yet effective approach to the problem of pedestrian
detection which outperforms the current state-of-the-art. Our new features are
built on the basis of low-level visual features and spatial pooling.
Incorporating spatial pooling improves the translational invariance and thus
the robustness of the detection process. We then directly optimise the partial
area under the ROC curve (\pAUC) measure, which concentrates detection
performance in the range of most practical importance. The combination of these
factors leads to a pedestrian detector which outperforms all competitors on all
of the standard benchmark datasets. We advance state-of-the-art results by
lowering the average miss rate from to on the INRIA benchmark,
to on the ETH benchmark, to on the TUD-Brussels
benchmark and to on the Caltech-USA benchmark.Comment: 16 pages. Appearing in Proc. European Conf. Computer Vision (ECCV)
201
Efficient SDP Inference for Fully-connected CRFs Based on Low-rank Decomposition
Conditional Random Fields (CRF) have been widely used in a variety of
computer vision tasks. Conventional CRFs typically define edges on neighboring
image pixels, resulting in a sparse graph such that efficient inference can be
performed. However, these CRFs fail to model long-range contextual
relationships. Fully-connected CRFs have thus been proposed. While there are
efficient approximate inference methods for such CRFs, usually they are
sensitive to initialization and make strong assumptions. In this work, we
develop an efficient, yet general algorithm for inference on fully-connected
CRFs. The algorithm is based on a scalable SDP algorithm and the low- rank
approximation of the similarity/kernel matrix. The core of the proposed
algorithm is a tailored quasi-Newton method that takes advantage of the
low-rank matrix approximation when solving the specialized SDP dual problem.
Experiments demonstrate that our method can be applied on fully-connected CRFs
that cannot be solved previously, such as pixel-level image co-segmentation.Comment: 15 pages. A conference version of this work appears in Proc. IEEE
Conference on Computer Vision and Pattern Recognition, 201
The Rise of Mega-FTAs. EU Centre in Singpore Fact Sheet (October 2013)
Free trade agreements (FTAs) are negotiated so that countries and businesses can benefit from the possibilities that international economic integration offers. By eradicating barriers to trade, mutual gains can be generated. FTAs, in general, create a bigger market, increase competition, but at the same time reward economies of scale, which in turn induces companies and countries to allocate their time and resources more efficiently. Moreover, greater business competition arising from FTAs can catalyse economic reforms such as accelerating the adoption of existing technologies and stimulating the development of new ones (Krist, 2012)
Functions of p120ctn isoforms in cell-cell adhesion and intracellular signaling
The functions of many organs depend on the generation of an epithelium. The transition from a set of loosely connected nonpolarized cells to organized sheets of closely associated polarized epithelial cells requires the assembly of specialized cell junctions. In vertebrates, three major types of junctions are responsible for epithelial integrity: adherens junctions, tight junctions, and desmosomes. p120 catenin (p120ctn) is an Armadillo family member and a component of the cadherin-catenin complex in the adherens junction. It fulfils pleiotropic functions according to its subcellular localization: modulating the turnover rate of membrane-bound cadherins, regulating the activation of small RhoGTPases in the cytoplasm, and modulating nuclear transcription. Over the last two decades, knowledge of p120ctn obtained from in vitro experiments has been confirmed and extended by using different animal models. It has become clear that p120ctn is essential for normal development and homeostasis, at least in frog and mammals. p120ctn is a Src substrate that can be phosphorylated at different tyrosine, serine and threonine residues and can dock various kinases and phosphatases. Thereby, p120ctn regulates the phosphorylation status and the junctional stability of the cadherin-catenin complex. Multiple p120ctn isoforms are generated by alternative splicing, which allows the translation to be initiated from four start codons and enables the inclusion of four alternatively used exons. We will discuss the effects of different p120ctn isoforms on cadherin turnover and intracellular signaling, in particular RhoGTPase activity and phosphorylation events
- …
