164 research outputs found
Deuterated water in the solar-type protostars NGC 1333 IRAS 4A and IRAS 4B
Aims. The aim of this paper is to study deuterated water in the solar-type
protostars NGC1333 IRAS4A and IRAS4B, to compare their HDO abundance
distribution with other star-forming regions, and to constrain their HDO/H2O
ratios. Methods. Using the Herschel/HIFI instrument as well as ground-based
telescopes, we observed several HDO lines covering a large excitation range
(Eup/k=22-168 K) towards these protostars and an outflow position. Non-LTE
radiative transfer codes were then used to determine the HDO abundance profiles
in these sources. Results. The HDO fundamental line profiles show a very broad
component, tracing the molecular outflows, in addition to a narrower emission
component and a narrow absorbing component. In the protostellar envelope of
NGC1333 IRAS4A, the HDO inner (T>100 K) and outer (T<100 K) abundances with
respect to H2 are estimated at 7.5x10^{-9} and 1.2x10^{-11}, respectively,
whereas, in NGC1333 IRAS4B, they are 1.0x10^{-8} and 1.2x10^{-10},
respectively. Similarly to the low-mass protostar IRAS16293-2422, an absorbing
outer layer with an enhanced abundance of deuterated water is required to
reproduce the absorbing components seen in the fundamental lines at 465 and 894
GHz in both sources. This water-rich layer is probably extended enough to
encompass the two sources as well as parts of the outflows. In the outflows
emanating from NGC1333 IRAS4A, the HDO column density is estimated at about
(2-4)x10^{13} cm^{-2}, leading to an abundance of about (0.7-1.9)x10^{-9}. An
HDO/H2O ratio between 7x10^{-4} and 9x10^{-2} is derived in the outflows. In
the warm inner regions of these two sources, we estimate the HDO/H2O ratios at
about 1x10^{-4}-4x10^{-3}. This ratio seems higher (a few %) in the cold
envelope of IRAS4A, whose possible origin is discussed in relation to formation
processes of HDO and H2O.Comment: 16 pages, 13 figure
Conversion of Cerrado into agricultural land in the south-western amazon: carbon stocks and soil fertility.
Mudanças de uso da terra e práticas de manejo modificam a dinâmica do C e a fertilidade do solo. Este estudo avaliou as implicações dos sistemas de cultivo (NT e CT) nos estoques de C e de nutrientes e identificou inter-relações entre estes estoques e outros atributos da fertilidade do solo em Latossolo após a mudança do uso da terra no cerrado amazônico. Os estoques de C e de nutrientes (P, K, Ca e Mg) ajustados pela massa equivalente do solo sob cerrado (CE), foram maiores principalmente sob NT. Após a adoção do NT, exceto em 2NT, os estoques de C foram maiores em relação às demais áreas avaliadas. Correlações entre estoques de C e de nutrientes revelaram algumas correlações positivas com Ca e Mg nas áreas sob NT, devido ao uso continuo de calcário, à maior quantidade de resíduos culturais e ao não revolvimento do solo, associado à correlações positivas com CTC, saturação por bases e pH. A correlação positiva (r = 0,91, p < 0,05) entre estoques de C e CTC em CE indica a importante contribuição da MOS na CT de solos tropicais, embora os sítios de troca estejam ocupados principalmente por H + Al. Estoques de P e K mostraram correlações positivas com estoques de C em CE (0,81 e 0,82; respectivamente), indicando a alta relação de P e K com a MOS em ecossistemas naturais. A alta variabilidade espacial associada à aplicação de fertilizantes (P e K) no sulco de plantio pode ter mascarado os resultados dos estoques. A principal fonte destes nutrientes para o solo foi o fertilizante aplicado e não a MOS
The abundance of C18O and HDO in the envelope and hot core of the intermediate mass protostar NGC 7129 FIRS 2
NGC 7129 FIRS 2 is a young intermediate-mass (IM) protostar, which is
associated with two energetic bipolar outflows and displays clear signs of the
presence of a hot core. It has been extensively observed with ground based
telescopes and within the WISH Guaranteed Time Herschel Key Program. We present
new observations of the C18O 3-2 and the HDO 3_{12}-2_{21} lines towards NGC
7129 FIRS 2. Combining these observations with Herschel data and modeling their
emissions, we constrain the C18O and HDO abundance profiles across the
protostellar envelope. In particular, we derive the abundance of C18O and HDO
in the hot core. The intensities of the C18O lines are well reproduced assuming
that the C18O abundance decreases through the protostellar envelope from the
outer edge towards the centre until the point where the gas and dust reach the
CO evaporation temperature (~20-25 K) where the C18O is released back to the
gas phase. Once the C18O is released to the gas phase, the modelled C18O
abundance is found to be ~1.6x10^{-8}, which is a factor of 10 lower than the
reference abundance. This result is supported by the non-detection of C18O 9-8,
which proves that even in the hot core (T_k>100 K) the CO abundance must be 10
times lower than the reference value. Several scenarios are discussed to
explain this C18O deficiency. One possible explanation is that during the
pre-stellar and protostellar phase, the CO is removed from the grain mantles by
reactions to form more complex molecules. Our HDO modeling shows that the
emission of HDO 3_{12}-2_{21} line is maser and comes from the hot core
(T_k>100 K). Assuming the physical structure derived by Crimier et al. (2010),
we determine a HDO abundance of ~0.4 - 1x10^{-7} in the hot core of this IM
protostar, similar to that found in the hot corinos NGC 1333 IRAS 2A and IRAS
16293-2422.Comment: 10 pages, 7 figure
Hydrides in Young Stellar Objects: Radiation tracers in a protostar-disk-outflow system
Context: Hydrides of the most abundant heavier elements are fundamental
molecules in cosmic chemistry. Some of them trace gas irradiated by UV or
X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a
prototypical region of high-mass star formation. Methods: W3 IRS5 was observed
by HIFI on the Herschel Space Observatory with deep integration (about 2500 s)
in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and
the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J=1-0 lines
are found mostly in absorption, but also appear to exhibit weak emission
(P-Cyg-like). Emission requires high density, thus originates most likely near
the protostar. This is corroborated by the absence of line shifts relative to
the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong
absorption components at a velocity shifted relative to W3 IRS5, which are
attributed to foreground clouds. Conclusions: The molecular column densities
derived from observations correlate well with the predictions of a model that
assumes the main emission region is in outflow walls, heated and irradiated by
protostellar UV radiation.Comment: Astronomy and Astrophysics Letters, in pres
Master crossover behavior of parachor correlations for one-component fluids
The master asymptotic behavior of the usual parachor correlations, expressing
surface tension as a power law of the density difference
between coexisting liquid and vapor, is analyzed for a
series of pure compounds close to their liquid-vapor critical point, using only
four critical parameters , , and ,
for each fluid.
... The main consequences of these theoretical estimations are discussed in
the light of engineering applications and process simulations where parachor
correlations constitute one of the most practical method for estimating surface
tension from density and capillary rise measurements
Water abundances in high-mass protostellar envelopes: Herschel observations with HIFI
We derive the dense core structure and the water abundance in four massive
star-forming regions which may help understand the earliest stages of massive
star formation. We present Herschel-HIFI observations of the para-H2O 1_11-0_00
and 2_02-1_11 and the para-H2-18O 1_11-0_00 transitions. The envelope
contribution to the line profiles is separated from contributions by outflows
and foreground clouds. The envelope contribution is modelled using Monte-Carlo
radiative transfer codes for dust and molecular lines (MC3D and RATRAN), with
the water abundance and the turbulent velocity width as free parameters. While
the outflows are mostly seen in emission in high-J lines, envelopes are seen in
absorption in ground-state lines, which are almost saturated. The derived water
abundances range from 5E-10 to 4E-8 in the outer envelopes. We detect cold
clouds surrounding the protostar envelope, thanks to the very high quality of
the Herschel-HIFI data and the unique ability of water to probe them. Several
foreground clouds are also detected along the line of sight. The low H2O
abundances in massive dense cores are in accordance with the expectation that
high densities and low temperatures lead to freeze-out of water on dust grains.
The spread in abundance values is not clearly linked to physical properties of
the sources.Comment: 8 pages, 5 figures, accepted for publication the 15/07/2010 by
Astronomy&Astrophysics as a letter in the Herschel-HIFI special issu
Sensitive limits on the abundance of cold water vapor in the DM Tau protoplanetary disk
We performed a sensitive search for the ground-state emission lines of ortho-
and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI
instrument. No strong lines are detected down to 3sigma levels in 0.5 km/s
channels of 4.2 mK for the 1_{10}--1_{01} line and 12.6 mK for the
1_{11}--0_{00} line. We report a very tentative detection, however, of the
1_{10}--1_{01} line in the Wide Band Spectrometer, with a strength of
T_{mb}=2.7 mK, a width of 5.6 km/s and an integrated intensity of 16.0 mK km/s.
The latter constitutes a 6sigma detection. Regardless of the reality of this
tentative detection, model calculations indicate that our sensitive limits on
the line strengths preclude efficient desorption of water in the UV illuminated
regions of the disk. We hypothesize that more than 95-99% of the water ice is
locked up in coagulated grains that have settled to the midplane.Comment: 5 pages, 3 figures. Accepted for publication in the Herschel HIFI
special issue of A&
Water in Star-Forming Regions with the Herschel Space Observatory (WISH): Overview of key program and first results
`Water In Star-forming regions with Herschel' (WISH) is a key program on the
Herschel Space Observatory designed to probe the physical and chemical
structure of young stellar objects using water and related molecules and to
follow the water abundance from collapsing clouds to planet-forming disks.
About 80 sources are targeted covering a wide range of luminosities and
evolutionary stages, from cold pre-stellar cores to warm protostellar envelopes
and outflows to disks around young stars. Both the HIFI and PACS instruments
are used to observe a variety of lines of H2O, H218O and chemically related
species. An overview of the scientific motivation and observational strategy of
the program is given together with the modeling approach and analysis tools
that have been developed. Initial science results are presented. These include
a lack of water in cold gas at abundances that are lower than most predictions,
strong water emission from shocks in protostellar environments, the importance
of UV radiation in heating the gas along outflow walls across the full range of
luminosities, and surprisingly widespread detection of the chemically related
hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of
the energy budget indicate that H2O is generally not the dominant coolant in
the warm dense gas associated with protostars. Very deep limits on the cold
gaseous water reservoir in the outer regions of protoplanetary disks are
obtained which have profound implications for our understanding of grain growth
and mixing in disks.Comment: 71 pages, 10 figures, PASP, in pres
Fluctuations of elastic interfaces in fluids: Theory and simulation
We study the dynamics of elastic interfaces-membranes-immersed in thermally
excited fluids. The work contains three components: the development of a
numerical method, a purely theoretical approach, and numerical simulation. In
developing a numerical method, we first discuss the dynamical coupling between
the interface and the surrounding fluids. An argument is then presented that
generalizes the single-relaxation time lattice-Boltzmann method for the
simulation of hydrodynamic interfaces to include the elastic properties of the
boundary. The implementation of the new method is outlined and it is tested by
simulating the static behavior of spherical bubbles and the dynamics of bending
waves. By means of the fluctuation-dissipation theorem we recover analytically
the equilibrium frequency power spectrum of thermally fluctuating membranes and
the correlation function of the excitations. Also, the non-equilibrium scaling
properties of the membrane roughening are deduced, leading us to formulate a
scaling law describing the interface growth, W^2(L,T)=L^3 g[t/L^(5/2)], where
W, L and T are the width of the interface, the linear size of the system and
the temperature respectively, and g is a scaling function. Finally, the
phenomenology of thermally fluctuating membranes is simulated and the frequency
power spectrum is recovered, confirming the decay of the correlation function
of the fluctuations. As a further numerical study of fluctuating elastic
interfaces, the non-equilibrium regime is reproduced by initializing the system
as an interface immersed in thermally pre-excited fluids.Comment: 15 pages, 11 figure
Water in massive star-forming regions: HIFI observations of W3 IRS5
We present Herschel observations of the water molecule in the massive
star-forming region W3 IRS5. The o-H17O 110-101, p-H18O 111-000, p-H2O 22
202-111, p-H2O 111-000, o-H2O 221-212, and o-H2O 212-101 lines, covering a
frequency range from 552 up to 1669 GHz, have been detected at high spectral
resolution with HIFI. The water lines in W3 IRS5 show well-defined
high-velocity wings that indicate a clear contribution by outflows. Moreover,
the systematically blue-shifted absorption in the H2O lines suggests expansion,
presumably driven by the outflow. No infall signatures are detected. The p-H2O
111-000 and o-H2O 212-101 lines show absorption from the cold material (T ~ 10
K) in which the high-mass protostellar envelope is embedded. One-dimensional
radiative transfer models are used to estimate water abundances and to further
study the kinematics of the region. We show that the emission in the rare
isotopologues comes directly from the inner parts of the envelope (T > 100 K)
where water ices in the dust mantles evaporate and the gas-phase abundance
increases. The resulting jump in the water abundance (with a constant inner
abundance of 10^{-4}) is needed to reproduce the o-H17O 110-101 and p-H18O
111-000 spectra in our models. We estimate water abundances of 10^{-8} to
10^{-9} in the outer parts of the envelope (T < 100 K). The possibility of two
protostellar objects contributing to the emission is discussed.Comment: Accepted for publication in the A&A HIFI special issu
- …
