57 research outputs found
Dynamic Regulation of Tgf-B Signaling by Tif1γ: A Computational Approach
TIF1γ (Transcriptional Intermediary Factor 1 γ) has been implicated in
Smad-dependent signaling by Transforming Growth Factor beta (TGF-β).
Paradoxically, TIF1γ functions both as a transcriptional repressor or as an
alternative transcription factor that promotes TGF-β signaling. Using
ordinary differential-equation models, we have investigated the effect of
TIF1γ on the dynamics of TGF-β signaling. An integrative model that
includes the formation of transient TIF1γ-Smad2-Smad4 ternary complexes is
the only one that can account for TGF-β signaling compatible with the
different observations reported for TIF1γ. In addition, our model predicts
that varying TIF1γ/Smad4 ratios play a critical role in the modulation of
the transcriptional signal induced by TGF-β, especially for short
stimulation times that mediate higher threshold responses. Chromatin
immunoprecipitation analyses and quantification of the expression of TGF-β
target genes as a function TIF1γ/Smad4 ratios fully validate this
hypothesis. Our integrative model, which successfully unifies the seemingly
opposite roles of TIF1γ, also reveals how changing TIF1γ/Smad4 ratios
affect the cellular response to stimulation by TGF-β, accounting for a
highly graded determination of cell fate
Altered Intracellular Localization and Mobility of SBDS Protein upon Mutation in Shwachman-Diamond Syndrome
Shwachman-Diamond Syndrome (SDS) is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients
The Human Nucleolar Protein FTSJ3 Associates with NIP7 and Functions in Pre-rRNA Processing
NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A′ to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells
TIF1γ interferes with TGFβ1/SMAD4 signaling to promote poor outcome in operable breast cancer patients
Construction and preliminary evaluation of a simulation model of the population dynamics of the potato cystnematode Globodera pallida
Capreomycin-induced serum electrolyte abnormalities
Gross electrolyte disturbances including hypokalaemia, hypomagnesaemia, hypocalcaemia, and alkalosis have developed in tuberculous patients who were being treated with capreomycin. Similar abnormalities have also occurred when the drug gentamicin was used and were found to be due to secondary hyperaldosteronism. In this paper a detailed description of the changes induced by capreomycin is given. The evidence available strongly suggests a similar aetiology for the biochemical changes, but the precise pathophysiology is unknown. Caution should be exercised when capreomycin is used and the drug should be withdrawn if any of these abnormalities develop
- …
