25,357 research outputs found

    Shear-stress controlled dynamics of nematic complex fluids

    Full text link
    Based on a mesoscopic theory we investigate the non-equilibrium dynamics of a sheared nematic liquid, with the control parameter being the shear stress σxy\sigma_{\mathrm{xy}} (rather than the usual shear rate, γ˙\dot\gamma). To this end we supplement the equations of motion for the orientational order parameters by an equation for γ˙\dot\gamma, which then becomes time-dependent. Shearing the system from an isotropic state, the stress- controlled flow properties turn out to be essentially identical to those at fixed γ˙\dot\gamma. Pronounced differences when the equilibrium state is nematic. Here, shearing at controlled γ˙\dot\gamma yields several non-equilibrium transitions between different dynamic states, including chaotic regimes. The corresponding stress-controlled system has only one transition from a regular periodic into a stationary (shear-aligned) state. The position of this transition in the σxy\sigma_{\mathrm{xy}}-γ˙\dot\gamma plane turns out to be tunable by the delay time entering our control scheme for σxy\sigma_{\mathrm{xy}}. Moreover, a sudden change of the control method can {\it stabilize} the chaotic states appearing at fixed γ˙\dot\gamma.Comment: 10 pages, 11 figure

    Cloning crops in a CELSS via tissue culture: Prospects and problems

    Get PDF
    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries

    Renormalized QRPA and double beta decay: a critical analysis of double Fermi transitions

    Full text link
    The proton-neutron monopole Lipkin model, which exhibits some properties which are relevant for those double beta decay (ββ\beta \beta) transitions mediated by the Fermi matrix elements, is solved exactly in the proton-neutron two-quasiparticle space. The exact results are compared with the ones obtained by using the Quasiparticle Random Phase (QRPA) and renormalized QRPA (RQRPA) approaches. It is shown that the RQRPA violates the Ikeda Sum Rule and that this violation may be common to any extension of the QRPA where scattering terms are neglected in the participant one-body operators as well as in the Hamiltonian. This finding underlines the need of additional developments before the RQRPA could be adopted as a reliable tool to compute ββ\beta \beta processes.Comment: 18 pages, LaTeX, 7 figures included as LaTeX files. Minor changes in title and tex

    Gaussian quantum fluctuations in interacting many particle systems

    Full text link
    We consider a many particle quantum system, in which each particle interacts only with its nearest neighbours. Provided that the energy per particle has an upper bound, we show, that the energy distribution of almost every product state becomes a Gaussian normal distribution in the limit of infinite number of particles. We indicate some possible applications.Comment: 10 pages, formulation made mathematically more precise, two examples added, accepted for publication in Letters in Mathematical Physic

    Jupiter's radiation belts: Can Pioneer 10 survive?

    Get PDF
    Model calculations of Jupiter's electron and proton radiation belts indicate that the Galilean satellites can reduce particle fluxes in certain regions of the inner magnetosphere by as much as six orders of magnitude. Average fluxes should be reduced by a factor of 100 or more along the Pioneer 10 trajectory through the heart of Jupiter's radiation belts in early December. This may be enough to prevent serious radiation damage to the spacecraft
    corecore