60 research outputs found

    3D geometric modelling of discontinuous fibre composites using a force-directed algorithm

    Get PDF
    A geometrical modelling scheme is presented to produce representative architectures for discontinuous fibre composites, enabling downstream modelling of mechanical properties. The model generates realistic random fibre architectures containing high filament count bundles (>3k) and high (~50%) fibre volume fractions. Fibre bundles are modelled as thin shells using a multi-dimension modelling strategy, in which fibre bundles are distributed and compacted to simulate pressure being applied from a matched mould tool. FE simulations are performed to benchmark the in-plane mechanical properties obtained from the numerical model against experimental data, with a detailed study presented to evaluate the tensile properties at various fibre volume fractions and specimen thicknesses. Tensile modulus predictions are in close agreement (less than 5% error) with experimental data at volume fractions below 45%. Ultimate tensile strength predictions are within 4.2% of the experimental data at volume fractions between 40%-55%. This is a significant improvement over existing 2D modelling approaches, as the current model offers increased levels of fidelity, capturing dominant failure mechanisms and the influence of out-of-plane fibres

    ABD Matrix of Single-Ply Triaxial Weave Fabric Composites

    Full text link
    The linear-elastic response of single-ply triaxial weave fabric composites is modelled in terms of a homogenized Kirchhoff plate. The ABD matrix for this plate is computed from an assembly of transversely isotropic three-dimensional beams whose unit cell is analysed using standard finite-element analysis, assuming periodic boundary conditions. A subset of the analytical results is validated by means of careful experiments. It is shown that this simple unit cell beam model captures accurately the experimentally observed behaviour. I

    Design and Analysis of Laminates for Self-Deployment of Viscoelastic Bistable Tape Springs After Long-Term Stowage

    No full text
    Bistable tape springs are ultrathin fiber-reinforced polymer composites, which could self-deploy through releasing stored strain energy. Strain energy relaxation is observed after long-term stowage of bistable tape springs due to viscoelastic effects and the tape springs might lose their self-deployment abilities. In order to mitigate the viscoelastic effects and thus ensure self-deployment, different tape springs were designed, manufactured, and tested. Deployment experiments show that a four-layer, [â '45/0/90/45], plain weave glass fiber tape spring has a high capability to mitigate the strain energy relaxation effects to ensure self-deployment after long-term stowage in a coiled configuration. The two inner layers increase the deployment force and the outer layers are used to generate the bistability. The presented four-layer tape spring can self-deploy after more than six months of stowage at room temperature. A numerical model was used to assess the long-term stowage effects on the deployment capability of bistable tape springs. The experiments and modeling results show that the viscoelastic strain energy relaxation starts after only a few minutes after coiling. The relaxation shear stiffness decreases as the shear strain increases and is further reduced by strain energy relaxation when a constant shear strain is applied. The numerical model and experiments could be applied in design to predict the deployment force of other types of tape springs with viscoelastic and friction effects included.</p

    Buckling Testing of a Subscale Composite Cylinder

    No full text

    DEVELOPMENT AND EVALUATION OF A LIGHTWEIGHT ALUMINUM HONEYCOMB CASE

    No full text

    Deployment Dynamics of Composite Booms with Integral Slotted Hinges

    No full text
    corecore