329 research outputs found
Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques
race metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources
A review of source tracking techniques for fine sediment within a catchment
Excessive transport of fine sediment, and its associated pollutants, can cause detrimental impacts in aquatic environments. It is therefore important to perform accurate sediment source apportionment to identify hot spots of soil erosion. Various tracers have been adopted, often in combination, to identify sediment source type and its spatial origin; these include fallout radionuclides, geochemical tracers, mineral magnetic properties and bulk and compound-specific stable isotopes. In this review, the applicability of these techniques to particular settings and their advantages and limitations are reviewed. By synthesizing existing approaches, that make use of multiple tracers in combination with measured changes of channel geomorphological attributes, an integrated analysis of tracer profiles in deposited sediments in lakes and reservoirs can be made. Through a multi-scale approach for fine sediment tracking, temporal changes in soil erosion and sediment load can be reconstructed and the consequences of changing catchment practices evaluated. We recommend that long-term, as well as short-term, monitoring of riverine fine sediment and corresponding surface and subsurface sources at nested sites within a catchment are essential. Such monitoring will inform the development and validation of models for predicting dynamics of fine sediment transport as a function of hydro-climatic and geomorphological controls. We highlight that the need for monitoring is particularly important for hilly catchments with complex and changing land use. We recommend that research should be prioritized for sloping farmland-dominated catchments
Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: evidence of positive heterosis and gene–gene interaction on working memory functioning.
The COMT Va
A review of source tracking techniques for fine sediment within a catchment
Excessive transport of fine sediment, and its associated pollutants, can cause detrimental impacts in aquatic environments. It is therefore important to perform accurate sediment source apportionment to identify hot spots of soil erosion. Various tracers have been adopted, often in combination, to identify sediment source type and its spatial origin; these include fallout radionuclides, geochemical tracers, mineral magnetic properties and bulk and compound-specific stable isotopes. In this review, the applicability of these techniques to particular settings and their advantages and limitations are reviewed. By synthesizing existing approaches, that make use of multiple tracers in combination with measured changes of channel geomorphological attributes, an integrated analysis of tracer profiles in deposited sediments in lakes and reservoirs can be made. Through a multi-scale approach for fine sediment tracking, temporal changes in soil erosion and sediment load can be reconstructed and the consequences of changing catchment practices evaluated. We recommend that long-term, as well as short-term, monitoring of riverine fine sediment and corresponding surface and subsurface sources at nested sites within a catchment are essential. Such monitoring will inform the development and validation of models for predicting dynamics of fine sediment transport as a function of hydro-climatic and geomorphological controls. We highlight that the need for monitoring is particularly important for hilly catchments with complex and changing land use. We recommend that research should be prioritized for sloping farmland-dominated catchments
A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease
Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts
The use of contextualised standardised client simulation to develop clinical reasoning in final year veterinary students
Clinical reasoning is an important skill for veterinary students to develop before graduation. Simulation has been studied in medical education as a method for developing clinical reasoning in students, but evidence supporting it is limited. This study involved the creation of a contextualized, standardized client simulation session that aimed to improve the clinical reasoning ability and confidence of final-year veterinary students. Sixty-eight participants completed three simulated primary-care consultations, with the client played by an actor and the pet by a healthy animal. Survey data showed that all participants felt that the session improved their clinical decision-making ability. Quantitative clinical reasoning self-assessment, performed using a validated rubric, triangulated this finding, showing an improvement in students’ perception of several components of their clinical reasoning skill level from before the simulation to after it. Blinded researcher analysis of the consultation video recordings found that students showed a significant increase in ability on the history-taking and making-sense-of-data (including formation of a differential diagnosis) components of the assessment rubric. Thirty students took part in focus groups investigating their experience with the simulation. Two themes arose from thematic analysis of these data: variety of reasoning methods and “It’s a different way of thinking.” The latter highlights differences between the decision making students practice during their time in education and the decision making they will use once they are in practice. Our findings suggest that simulation can be used to develop clinical reasoning in veterinary students, and they demonstrate the need for further research in this area
Improving the assessment of transferable skills in chemistry through evaluation of current practice
The development and assessment of transferable skills acquired by students, such as communication and teamwork, within undergraduate degrees is being increas-ingly emphasised. Many instructors have designed and implemented assessment tasks with the aim to provide students with opportunities to acquire and demon-strate these skills. We have now applied our previously published tool to evaluate whether assessment tasks allow students to demonstrate achievement of these transferable skills. The tool allows detailed evaluation of the alignment of any as-sessment item against the claimed set of learning outcomes. We present here two examples in which use of the tool provides evidence for the level of achievement of transferable skills and a further example of use of the tool to inform curricu-lum design and pedagogy, with the goal of increasing achievement of communi-cation and teamwork bench marks. Implications for practice in assessment design for learning are presented
Timing of radiotherapy after radical prostatectomy (RADICALS-RT): a randomised, controlled phase 3 trial
Background:
The optimal timing of radiotherapy after radical prostatectomy for prostate cancer is uncertain. We aimed to compare the efficacy and safety of adjuvant radiotherapy versus an observation policy with salvage radiotherapy for prostate-specific antigen (PSA) biochemical progression. /
Methods:
We did a randomised controlled trial enrolling patients with at least one risk factor (pathological T-stage 3 or 4, Gleason score of 7–10, positive margins, or preoperative PSA ≥10 ng/mL) for biochemical progression after radical prostatectomy (RADICALS-RT). The study took place in trial-accredited centres in Canada, Denmark, Ireland, and the UK. Patients were randomly assigned in a 1:1 ratio to adjuvant radiotherapy or an observation policy with salvage radiotherapy for PSA biochemical progression (PSA ≥0·1 ng/mL or three consecutive rises). Masking was not deemed feasible. Stratification factors were Gleason score, margin status, planned radiotherapy schedule (52·5 Gy in 20 fractions or 66 Gy in 33 fractions), and centre. The primary outcome measure was freedom from distant metastases, designed with 80% power to detect an improvement from 90% with salvage radiotherapy (control) to 95% at 10 years with adjuvant radiotherapy. We report on biochemical progression-free survival, freedom from non-protocol hormone therapy, safety, and patient-reported outcomes. Standard survival analysis methods were used. A hazard ratio (HR) of less than 1 favoured adjuvant radiotherapy. This study is registered with ClinicalTrials.gov, NCT00541047. /
Findings:
Between Nov 22, 2007, and Dec 30, 2016, 1396 patients were randomly assigned, 699 (50%) to salvage radiotherapy and 697 (50%) to adjuvant radiotherapy. Allocated groups were balanced with a median age of 65 years (IQR 60–68). Median follow-up was 4·9 years (IQR 3·0–6·1). 649 (93%) of 697 participants in the adjuvant radiotherapy group reported radiotherapy within 6 months; 228 (33%) of 699 in the salvage radiotherapy group reported radiotherapy within 8 years after randomisation. With 169 events, 5-year biochemical progression-free survival was 85% for those in the adjuvant radiotherapy group and 88% for those in the salvage radiotherapy group (HR 1·10, 95% CI 0·81–1·49; p=0·56). Freedom from non-protocol hormone therapy at 5 years was 93% for those in the adjuvant radiotherapy group versus 92% for those in the salvage radiotherapy group (HR 0·88, 95% CI 0·58–1·33; p=0·53). Self-reported urinary incontinence was worse at 1 year for those in the adjuvant radiotherapy group (mean score 4·8 vs 4·0; p=0·0023). Grade 3–4 urethral stricture within 2 years was reported in 6% of individuals in the adjuvant radiotherapy group versus 4% in the salvage radiotherapy group (p=0·020). /
Interpretation:
These initial results do not support routine administration of adjuvant radiotherapy after radical prostatectomy. Adjuvant radiotherapy increases the risk of urinary morbidity. An observation policy with salvage radiotherapy for PSA biochemical progression should be the current standard after radical prostatectomy. /
Funding:
Cancer Research UK, MRC Clinical Trials Unit, and Canadian Cancer Society
Initial clinical experience with frameless optically guided stereotactic radiosurgery/radiotherapy in pediatric patients
The objective of this study is to report our initial experience treating pediatric patients with central nervous system tumors using a frameless, optically guided linear accelerator.
Pediatric patients were selected for treatment after evaluation by a multidisciplinary neuro-oncology team including neurosurgery, neurology, pathology, oncology, and radiation oncology. Prior to treatment, all patients underwent treatment planning using magnetic resonance imaging (MRI) and treatment simulation on a standard computed tomography scanner (CT). For CT simulation, patients were fitted with a customized plastic face mask with a bite block attached to an optical array with four reflective markers. After ensuring adequate reproducibility, these markers were tracked during treatment by an infra-red camera. All treatments were delivered on a Varian Trilogy linear accelerator. The follow-up period ranges from 1–18 months, with a median follow-up of 6 months.
Nine patients, ages ranging from 12 to 19 years old (median age 15 years old), with a variety of tumors have been treated. Patients were treated for juvenile pilocytic astrocytoma (JPA; n = 2), pontine low-grade astrocytoma (n = 1), pituitary adenoma (n = 3), metastatic medulloblastoma (n = 1), acoustic neuroma (n = 1), and pineocytoma (n = 1). We followed patients for a median of 12 months (range 3–18 months) with no in-field failures and were able to obtain encouraging toxicity profiles.
Frameless stereotactic optically guided radiosurgery and radiotherapy provides a feasible and accurate tool to treat a number of benign and malignant tumors in children with minimal treatment-related morbidity
- …
