6 research outputs found
The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum)
Wiggerich HG, Pühler A. The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). MICROBIOLOGY-SGM. 2000;146:1053-1060.The tonB, exbB and exbD1 genes of Xanthomonas campestris pv. campestris are essential for ferric iron uptake. In contrast, the exbD2 gene located in the same gene cluster is not essential. Mutational analysis revealed that the ferric-iron-uptake genes tonB, exbB and exbD1 are necessary for the induction of a hypersensitive response (HR) on the nonhost plant pepper (Capsicum annuum) and the induction of typical black rot symptoms on the host plant cauliflower (Brassica oleracea). Again, the exbD2 gene behaved differently. It was found to play a role only in the induction of the HR in pepper but not in the induction of black rot symptoms in cauliflower. Due to the low iron concentration in the plant tissue, the titre of viable bacteria of the ferric-iron-uptake mutants tonB, exbB and exbD1 decreased after leaf infiltration of pepper. The exbD2 mutant, however, which is not impaired in ferric iron uptake, multiplied in the pepper leaf tissue and grew even better than the wild-type strain, probably due to its failure to induce the HR. Nevertheless, the tonB, exbB and exbD1 mutant strains were able to spread systemically in cauliflower
SATURATION MUTAGENESIS IN ESCHERICHIA-COLI OF A CLONED XANTHOMONAS-CAMPESTRIS DNA FRAGMENT WITH THE LUX TRANSPOSON TN4431 USING THE DELIVERY PLASMID PDS1, THERMOSENSITIVE IN REPLICATION
STEINMANN D, WIGGERICH HG, KLAUKE B, SCHRAMM U, Pühler A, PRIEFER UB. SATURATION MUTAGENESIS IN ESCHERICHIA-COLI OF A CLONED XANTHOMONAS-CAMPESTRIS DNA FRAGMENT WITH THE LUX TRANSPOSON TN4431 USING THE DELIVERY PLASMID PDS1, THERMOSENSITIVE IN REPLICATION. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 1993;40(2-3):356-360.A system allowing transposon mutagenesis of cloned DNA fragments in Escherichia coil with Tn4431, which carries the promotorless luciferase (lux) operon of Vibrio fischeri, has been developed. The transposon delivery plasmid, pDS1, based on an IncF replicon, is thermosensitive in replication and mobilizable to many Gram-negative bacteria. We used pDS1 for Tn4431-saturation mutagenesis of a 10-kb DNA fragment of Xanthomonas campestris pv. campestris (X.c.c.) in E. coli and showed that the expression of the lux operon was dependent on orientation and location of the transposon. Transfer of a specific Tn4431 insertion to X.c.c. allowed the determination of the bioluminescence phenotype in planta
