14 research outputs found

    Tumor Susceptibility Gene 101 (TSG101) Is a Novel Binding-Partner for the Class II Rab11-FIPs

    Get PDF
    The Rab11-FIPs (Rab11-family interacting proteins; henceforth, FIPs) are a family of Rab11a/Rab11b/Rab25 GTPase effector proteins implicated in an assortment of intracellular trafficking processes. Through proteomic screening, we have identified TSG101 (tumor susceptibility gene 101), a component of the ESCRT-I (endosomal sorting complex required for transport) complex, as a novel FIP4-binding protein, which we find can also bind FIP3. We show that α-helical coiled-coil regions of both TSG101 and FIP4 mediate the interaction with the cognate protein, and that point mutations in the coiled-coil regions of both TSG101 and FIP4 abrogate the interaction. We find that expression of TSG101 and FIP4 mutants cause cytokinesis defects, but that the TSG101-FIP4 interaction is not required for localisation of TSG101 to the midbody/Flemming body during abscission. Together, these data suggest functional overlap between Rab11-controlled processes and components of the ESCRT pathway

    Cytoplasmic location of NR4A1 in aggressive lymphomas is associated with a favourable cancer specific survival

    Get PDF
    Abstract The nuclear orphan receptor NR4A1 functions as tumour suppressor in aggressive lymphomas by pro-apoptotic genomic and non-genomic effects. Here, we immunohistochemically studied the clinico-pathological relevance of NR4A1 protein expression patterns in a cohort of 60 diffuse large B cell lymphoma (DLBCL) patients and non-neoplastic lymph nodes. We observed a significant association between high cytoplasmic NR4A1 and favourable cancer-specific survival and the germinal centre B cell-like subtype, respectively. Moreover, the percentage of lymphoma cells exhibiting cytoplasmic NR4A1 significantly correlated to those showing cleaved caspase 3. Complementary, functional profiling using gene set enrichment of Reactome pathways based on publicly available microarray data was applied to determine pathways potentially implicated in cytoplasmic localization of NR4A1 and validated by means of semi quantitative real-time PCR. The pathway analysis revealed changes in the ERK1/2 pathway, and this was corroborated by the finding that high cytoplasmic NR4A1 was associated with higher expression of ERK1/2 targets in our cohort. These data indicate that high cytoplasmic NR4A1 is associated with a favourable lymphoma-specific survival and highlights the importance of NR4A1 expression patterns as potential prognostic marker for risk assessment in aggressive lymphomas

    ESCRT-I Protein Tsg101 Plays a Role in the Post-macropinocytic Trafficking and Infection of Endothelial Cells by Kaposi’s Sarcoma-Associated Herpesvirus

    No full text
    Kaposi's sarcoma-associated herpesvirus (KSHV) binding to the endothelial cell surface heparan sulfate is followed by sequential interactions with α3β1, αVβ3 and αVβ5 integrins and Ephrin A2 receptor tyrosine kinase (EphA2R). These interactions activate host cell pre-existing FAK, Src, PI3-K and RhoGTPase signaling cascades, c-Cbl mediated ubiquitination of receptors, recruitment of CIB1, p130Cas and Crk adaptor molecules, and membrane bleb formation leading to lipid raft dependent macropinocytosis of KSHV into human microvascular dermal endothelial (HMVEC-d) cells. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins, ESCRT-0, -I, -II, and-III, play a central role in clathrin-mediated internalized ubiquitinated receptor endosomal trafficking and sorting. ESCRT proteins have also been shown to play roles in viral egress. We have recently shown that ESCRT-0 component Hrs protein associates with the plasma membrane during macropinocytosis and mediates KSHV entry via ROCK1 mediated phosphorylation of NHE1 and local membrane pH change. Here, we demonstrate that the ESCRT-I complex Tsg101 protein also participates in the macropinocytosis of KSHV and plays a role in KSHV trafficking. Knockdown of Tsg101 did not affect virus entry in HMVEC-d and human umbilical vein endothelial (HUVEC) cells but significantly inhibited the KSHV genome entry into the nucleus and consequently viral gene expression in these cells. Double and triple immunofluorescence, proximity ligation immunofluorescence and co-immuoprecipitation studies revealed the association of Tsg101 with the KSHV containing macropinosomes, and increased levels of Tsg101 association/interactions with EphA2R, c-Cbl, p130Cas and Crk signal molecules, as well as with upstream and downstream ESCRT components such as Hrs (ESCRT-0), EAP45 (ESCRT-II), CHMP6 (ESCRT-III) and CHMP5 (ESCRT-III) in the KSHV infected cells. Tsg101 was also associated with early (Rab5) and late endosomal (Rab7) stages of KSHV intracellular trafficking, and CHMP5 (ESCRT-III) was also associated with Rab 5 and Rab 7. Knockdown of Tsg101 significantly inhibited the transition of virus from early to late endosomes. Collectively, our studies reveal that Tsg101 plays a role in the trafficking of macropinocytosed KSHV in the endothelial cells which is essential for the successful viral genome delivery into the nucleus, viral gene expression and infection. Thus, ESCRT molecules could serve as therapeutic targets to combat KSHV infection
    corecore