370 research outputs found

    Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks

    Full text link
    Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a fully automated deep learning approach to the problem of bone age assessment using data from Pediatric Bone Age Challenge organized by RSNA 2017. The dataset for this competition is consisted of 12.6k radiological images of left hand labeled by the bone age and sex of patients. Our approach utilizes several deep learning architectures: U-Net, ResNet-50, and custom VGG-style neural networks trained end-to-end. We use images of whole hands as well as specific parts of a hand for both training and inference. This approach allows us to measure importance of specific hand bones for the automated bone age analysis. We further evaluate performance of the method in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.Comment: 14 pages, 9 figure

    Influence of supramolecular forces on the linear viscoelasticity of gluten

    Get PDF
    Stress relaxation behavior of hydrated gluten networks was investigated by means of rheometry combined with μ-computed tomography (μ-CT) imaging. Stress relaxation behavior was followed over a wide temperature range (0–70 °C). Modulation of intermolecular bonds was achieved with urea or ascorbic acid in an effort to elucidate the presiding intermolecular interactions over gluten network relaxation. Master curves of viscoelasticity were constructed, and relaxation spectra were computed revealing three relaxation regimes for all samples. Relaxation commences with a well-defined short-time regime where Rouse-like modes dominate, followed by a power law region displaying continuous relaxation concluding in a terminal zone. In the latter zone, poroelastic relaxation due to water migration in the nanoporous structure of the network also contributes to the stress relief in the material. Hydrogen bonding between adjacent protein chains was identified as the determinant force that influences the relaxation of the networks. Changes in intermolecular interactions also resulted in changes in microstructure of the material that was also linked to the relaxation behavior of the networks

    Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases.

    Get PDF
    The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.g., aggregated α-synuclein in SNCA gene multiplication or aggregated β-amyloid in APP mutations), their near universality at postmortem in sporadic PD and AD suggests they may alternatively represent common outcomes from upstream mechanisms or compensatory responses to cellular stress in order to delay cell death. These 3 conceptual frameworks of protein aggregation (pathogenic, epiphenomenon, protective) are difficult to resolve because of the inability to probe brain tissue in real time. Whereas animal models, in which neither PD nor AD occur in natural states, consistently support a pathogenic role of protein aggregation, indirect evidence from human studies does not. We hypothesize that (1) current biomarkers of protein aggregates may be relevant to common pathology but not to subgroup pathogenesis and (2) disease-modifying treatments targeting oligomers or fibrils might be futile or deleterious because these proteins are epiphenomena or protective in the human brain under molecular stress. Future precision medicine efforts for molecular targeting of neurodegenerative diseases may require analyses not anchored on current clinicopathologic criteria but instead on biological signals generated from large deeply phenotyped aging populations or from smaller but well-defined genetic-molecular cohorts

    Rural to Urban Migration and Changes in Cardiovascular risk Factors in Tanzania: A Prospective Cohort Study.

    Get PDF
    High levels of rural to urban migration are a feature of most African countries. Our aim was to investigate changes, and their determinants, in cardiovascular risk factors on rural to urban migration in Tanzania. Men and women (15 to 59 years) intending to migrate from Morogoro rural region to Dar es Salaam for at least 6 months were identified. Measurements were made at least one week but no more than one month prior to migration, and 1 to 3 monthly after migration. Outcome measures included body mass index, blood pressure, fasting lipids, and self reported physical activity and diet. One hundred and three men, 106 women, mean age 29 years, were recruited and 132 (63.2%) followed to 12 months. All the figures presented here refer to the difference between baseline and 12 months in these 132 individuals. Vigorous physical activity declined (79.4% to 26.5% in men, 37.8% to 15.6% in women, p < 0.001), and weight increased (2.30 kg men, 2.35 kg women, p < 0.001). Intake of red meat increased, but so did the intake of fresh fruit and vegetables. HDL cholesterol increased in men and women (0.24, 0.25 mmoll-1 respectively, p < 0.001); and in men, not women, total cholesterol increased (0.42 mmoll-1, p = 0.01), and triglycerides fell (0.31 mmoll-1, p = 0.034). Blood pressure appeared to fall in both men and women. For example, in men systolic blood pressure fell by 5.4 mmHg, p = 0.007, and in women by 8.6 mmHg, p = 0.001. The lower level of physical activity and increasing weight will increase the risk of diabetes and cardiovascular disease. However, changes in diet were mixed, and may have contributed to mixed changes in lipid profiles and a lack of rise in blood pressure. A better understanding of the changes occurring on rural to urban migration is needed to guide preventive measures

    Chemical Modification of Polaronic States in Anatase TiO2(101)

    Get PDF
    Two polymorphs of TiO2, anatase and rutile, are employed in photocatalytic applications. It is broadly accepted that anatase is the more catalytically active and subsequently finds wider commercial use. In this work, we focus on the Ti3+ polaronic states of anatase TiO2(101), which lie at ∼1.0 eV binding energy and are known to increase catalytic performance. Using UV-photoemission and two-photon photoemission spectroscopies, we demonstrate the capability to tune the excited state resonance of polarons by controlling the chemical environment. Anatase TiO2(101) contains subsurface polarons which undergo sub-band-gap photoexcitation to states ∼2.0 eV above the Fermi level. Formic acid adsorption dramatically influences the polaronic states, increasing the binding energy by ∼0.3 eV. Moreover, the photoexcitation oscillator strength changes significantly, resonating with states ∼3.0 eV above the Fermi level. We show that this behavior is likely due to the surface migration of subsurface oxygen vacancies

    The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state

    Get PDF
    We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page

    Photoexcitation of bulk polarons in rutile TiO₂

    Get PDF
    The excitation of surface-localized polaronic states has recently been discussed as an additional photocatalytic channel to band gap excitation for rutile Ti O 2 . A contribution from photoexcitation of bulk polarons could, in principle, provide a greater contribution because of their higher number and their protection from oxidation. However, determining such a contribution to the photoyield is challenging and has not been achieved thus far. Here we use two photon photoemission spectroscopy measurements to separate bulk and surface polaron photoexcitation. We find that bulk polarons are less bound by 0.2 eV compared with polarons at the surface, consistent with our results of hybrid density functional theory calculations. Because the excited state is also shifted to higher energy, bulk polarons have the same photoexcitation resonance energy as at the surface (3.6 eV) with a threshold at 3.1 eV. This is degenerate with the band gap, suggesting that bulk polarons could also provide an additional contribution to the photoyield

    The prevalence of stunting, overweight and obesity, and metabolic disease risk in rural South African children.

    Get PDF
    BACKGROUND: Low- to middle-income countries are undergoing a health transition with non-communicable diseases contributing substantially to disease burden, despite persistence of undernutrition and infectious diseases. This study aimed to investigate the prevalence and patterns of stunting and overweight/obesity, and hence risk for metabolic disease, in a group of children and adolescents in rural South Africa. METHODS: A cross-sectional growth survey was conducted involving 3511 children and adolescents 1-20 years, selected through stratified random sampling from a previously enumerated population living in Agincourt sub-district, Mpumalanga Province, South Africa. Anthropometric measurements including height, weight and waist circumference were taken using standard procedures. Tanner pubertal assessment was conducted among adolescents 9-20 years. Growth z-scores were generated using 2006 WHO standards for children up to five years and 1977 NCHS/WHO reference for older children. Overweight and obesity for those or = 25 and > or = 30 kg/m2 for overweight and obesity respectively were used for those > or = 18 years. Waist circumference cut-offs of > or = 94 cm for males and > or = 80 cm for females and waist-to-height ratio of 0.5 for both sexes were used to determine metabolic disease risk in adolescents. RESULTS: About one in five children aged 1-4 years was stunted; one in three of those aged one year. Concurrently, the prevalence of combined overweight and obesity, almost non-existent in boys, was substantial among adolescent girls, increasing with age and reaching approximately 20-25% in late adolescence. Central obesity was prevalent among adolescent girls, increasing with sexual maturation and reaching a peak of 35% at Tanner Stage 5, indicating increased risk for metabolic disease. CONCLUSIONS: The study highlights that in transitional societies, early stunting and adolescent obesity may co-exist in the same socio-geographic population. It is likely that this profile relates to changes in nutrition and diet, but variation in factors such as infectious disease burden and physical activity patterns, as well as social influences, need to be investigated. As obesity and adult short stature are risk factors for metabolic syndrome and Type 2 diabetes, this combination of early stunting and adolescent obesity may be an explosive combination

    PRSNet: Part Relation and Selection Network for Bone Age Assessment

    Full text link
    Bone age is one of the most important indicators for assessing bone's maturity, which can help to interpret human's growth development level and potential progress. In the clinical practice, bone age assessment (BAA) of X-ray images requires the joint consideration of the appearance and location information of hand bones. These kinds of information can be effectively captured by the relation of different anatomical parts of hand bone. Recently developed methods differ mostly in how they model the part relation and choose useful parts for BAA. However, these methods neglect the mining of relationship among different parts, which can help to improve the assessment accuracy. In this paper, we propose a novel part relation module, which accurately discovers the underlying concurrency of parts by using multi-scale context information of deep learning feature representation. Furthermore, based on the part relation, we explore a new part selection module, which comprehensively measures the importance of parts and select the top ranking parts for assisting BAA. We jointly train our part relation and selection modules in an end-to-end way, achieving state-of-the-art performance on the public RSNA 2017 Pediatric Bone Age benchmark dataset and outperforming other competitive methods by a significant margin

    Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation

    Get PDF
    Biodegradable magnesium alloys including AZ31 are exciting candidates for temporary implants as they eliminate the requirement for surgical removal, yet have higher mechanical properties than degradable polymers. However, the very long term mechanical properties and degradation of these alloys have not been fully characterized. The tensile, bending and corrosion behaviour of biodegradable AZ31 Mg alloy specimens have been investigated for up to 9 months in vitro in phosphate buffered saline (PBS). Small AZ31 Mg specimens showed a significant drop in bend yield strength and modulus after 3 months in vitro degradation and an average mass loss of 6.1%. Larger dumbbell specimens showed significant drops in tensile strength from 251.96 ± 3.53 MPa to 73.5 ± 20.2 MPa and to 6.43 ± 0.9 MPa and in modulus from 47.8 ± 5.6GPa to 25.01 ± 3.4GPa and 2.36 ± 0.89GPa after 3 and 9 months respectively. These reductions were accompanied by an average mass loss of 18.3% in 9 months. Degradation rate for the small and large specimens followed similar profiles with immersion time, with peak degradation rates of 0.1747 g m− 2 h−1 and 0.0881 g m− 2 h−1, and average rates of 0.1038 g m− 2 h−1 and 0.0397 g m− 2 h−1 respectively. SEM fractography and polished specimen cross-sections revealed corrosion pits, cracks and corrosion induced defects. These data indicate the potential of AZ31 Mg for use in implants that require medium term degradation with load bearing mechanical properties
    corecore