16 research outputs found

    Comparison of glucose tolerance in renal transplant recipients and hemodialysis patients

    Get PDF
    BACKGROUND: Impaired glucose tolerance is a risk factor for atherosclerosis in hemodialysis patients and renal transplant recipients. METHODS: To check the relationship of impaired glucose tolerance with the other atherosclerotic risk factors, fasting blood sugar and the standard two hour glucose tolerance test, serum tryglyceride, serum cholesterol, cyclosporine through level (in renal tranpslant recipients) and hemoglobin A1C were measured in 55 stable renal transplant recipients, 55 hemodialysis patients and 55 healthy controls with similar demographic characteristics. Patients with diabetes mellitus and propranolol consumers were excluded. The mean age and female to male ratio were 39 +/- 7 years and 23/22, respectively. RESULTS: Four of the renal transplant recipients and twelve of the hemodialysis patients had impaired glucose tolerance. Significant linear correlation was observed with body mass index and IGT only in hemodialysis patients (r = 0.4, p = 0.05). Glucose tolerance also had a significant correlation with triglyceride levels (217.2 +/- 55 mg/dl in hemodialysis patients vs. 214.3 +/- 13 mg/dl in renal transplant recipients and 100.2 +/- 18 mg/dl in control groups, p = 0.001). The glucose tolerance had significant relationship with higher serum cholesterol levels only in the renal transplant recipients (269.7 +/- 54 in renal transplant recipients vs. 199.2 +/- 36.6 mg/dl in hemodialysis and 190.5 +/- 34 mg/dl in control groups, p = 0.0001). In the renal transplant recipients, a linear correlation was observed with glucose tolerance and both the serum cyclosporine level (r = 0.9, p = 0.001) and the hemoglobin A1C concentration (6.2 +/- 0.9 g/dl). The later correlation was also observed in the hemodialysis patients (6.4 +/- 0.7 g/dl; r = 67, p = 0.001). CONCLUSIONS: We conclude that although fasting blood sugar is normal in non-diabetic renal transplant and hemodialysis patients, impaired glucose tolerance could be associated with the other atherosclerotic risk factors

    Using a human cardiovascular-respiratory model to characterize cardiac tamponade and pulsus paradoxus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac tamponade is a condition whereby fluid accumulation in the pericardial sac surrounding the heart causes elevation and equilibration of pericardial and cardiac chamber pressures, reduced cardiac output, changes in hemodynamics, partial chamber collapse, pulsus paradoxus, and arterio-venous acid-base disparity. Our large-scale model of the human cardiovascular-respiratory system (H-CRS) is employed to study mechanisms underlying cardiac tamponade and pulsus paradoxus. The model integrates hemodynamics, whole-body gas exchange, and autonomic nervous system control to simulate pressure, volume, and blood flow.</p> <p>Methods</p> <p>We integrate a new pericardial model into our previously developed H-CRS model based on a fit to patient pressure data. Virtual experiments are designed to simulate pericardial effusion and study mechanisms of pulsus paradoxus, focusing particularly on the role of the interventricular septum. Model differential equations programmed in C are solved using a 5<sup>th</sup>-order Runge-Kutta numerical integration scheme. MATLAB is employed for waveform analysis.</p> <p>Results</p> <p>The H-CRS model simulates hemodynamic and respiratory changes associated with tamponade clinically. Our model predicts effects of effusion-generated pericardial constraint on chamber and septal mechanics, such as altered right atrial filling, delayed leftward septal motion, and prolonged left ventricular pre-ejection period, causing atrioventricular interaction and ventricular desynchronization. We demonstrate pericardial constraint to markedly accentuate normal ventricular interactions associated with respiratory effort, which we show to be the distinct mechanisms of pulsus paradoxus, namely, series and parallel ventricular interaction. Series ventricular interaction represents respiratory variation in right ventricular stroke volume carried over to the left ventricle via the pulmonary vasculature, whereas parallel interaction (via the septum and pericardium) is a result of competition for fixed filling space. We find that simulating active septal contraction is important in modeling ventricular interaction. The model predicts increased arterio-venous CO<sub>2 </sub>due to hypoperfusion, and we explore implications of respiratory pattern in tamponade.</p> <p>Conclusion</p> <p>Our modeling study of cardiac tamponade dissects the roles played by septal motion, atrioventricular and right-left ventricular interactions, pulmonary blood pooling, and the depth of respiration. The study fully describes the physiological basis of pulsus paradoxus. Our detailed analysis provides biophysically-based insights helpful for future experimental and clinical study of cardiac tamponade and related pericardial diseases.</p
    corecore