6,932 research outputs found
Organizational stressor of staff negative behaviors among higher education deans: a post positivist multiple case study
Organizations and institutions today are now seeing rise of organizational stress and how it is directly contributing to the rise of financial and personal cost of mental health issues among its workers (Patty, 2016). The all important field of higher education is not spared and is also
undergoing a paradigm shift, as a historically low competition industry to a sudden highly competitive industry (Otara, 2015). With these drastic changes, higher education deans are now plagued by a myriad of organizational stressors. A qualitative case study approach was used to investigated this phenomenon, encompassing the interview techniques of Patton (2002) and the validity and reliability exercises of Creswell (2014). Deans from one institution
was found to encounter staff related organizational stressors which consisted of lecturer low performance, lecturer going against dean, lecturer against lecturer, lecturer negative behavior, lecturer low work ethic, and administrative staff negative work elements. This confirmed on the existence of organizational stressors among higher education deans and may be used to spur future research to reduce or eliminated this phenomenon
Role of hepatitis B virus genotypes in chronic hepatitis B exacerbation
Hepatitis B virus (HBV) genotypes and precore and core promoter mutations were determined in 318 patients with HBV. Patients infected with HBV genotype B had a higher median alanine aminotransferase level and bilirubin level and a lower median albumin level during exacerbations of disease, compared with patients infected with HBV genotype C (all P < .001). By logistic regression analysis, HBV genotype B infection (P = .014) and low albumin levels (P = .006) were independently associated with a higher risk of hepatic decompensation during severe exacerbations of disease. Patients infected with genotype B had a significantly higher mortality due to hepatic decompensation than did patients with genotype C (70% vs. 27.8%; P = .05).published_or_final_versio
Behavioral activation for dementia caregivers: scheduling pleasant events and enhancing communications
published_or_final_versio
Delivering mesenchymal stem cells in collagen microsphere carriers to rabbit degenerative disc - Reduced risk of osteophyte formation.
Mesenchymal stem cells (MSCs) have the potential to treat early intervertebral disc (IVD) degeneration. However, during intradiscal injection, the vast majority of cells leaked out even in the presence of hydrogel carrier. Recent evidence suggests that annulus puncture is associated with cell leakage and contributes to osteophyte formation, an undesirable side effect. This suggests the significance of developing appropriate carriers for intradiscal delivery of MSCs. We previously developed a collagen microencapsulation platform, which entraps MSCs in a solid microsphere consisting of collagen nanofiber meshwork. These solid yet porous microspheres support MSC attachment, survival, proliferation, migration, differentiation, and matrix remodeling. Here we hypothesize that intradiscal injection of MSCs in collagen microspheres will outperform that of MSCs in saline in terms of better functional outcomes and reduced side effects. Specifically, we induced disc degeneration in rabbits and then intradiscally injected autologous MSCs, either packaged within collagen microspheres or directly suspended in saline, into different disc levels. Functional outcomes including hydration index and disc height were monitored regularly until 6 months. Upon sacrifice, the involved discs were harvested for histological, biochemical, and biomechanical evaluations. MSCs in collagen microspheres showed advantage over MSCs in saline in better maintaining the dynamic mechanical behavior but similar performance in hydration and disc height maintenance and matrix composition. More importantly, upon examination of gross appearance, radiograph, and histology of IVD, delivering MSCs in collagen microspheres significantly reduced the risk of osteophyte formation as compared to that in saline. This work demonstrates the significance of using cell carriers during intradiscal injection of MSCs in treating disc degeneration.published_or_final_versio
On the Hardware/Software Design and Implementation of a High Definition Multiview Video Surveillance System
published_or_final_versio
A Note on Encodings of Phylogenetic Networks of Bounded Level
Driven by the need for better models that allow one to shed light into the
question how life's diversity has evolved, phylogenetic networks have now
joined phylogenetic trees in the center of phylogenetics research. Like
phylogenetic trees, such networks canonically induce collections of
phylogenetic trees, clusters, and triplets, respectively. Thus it is not
surprising that many network approaches aim to reconstruct a phylogenetic
network from such collections. Related to the well-studied perfect phylogeny
problem, the following question is of fundamental importance in this context:
When does one of the above collections encode (i.e. uniquely describe) the
network that induces it? In this note, we present a complete answer to this
question for the special case of a level-1 (phylogenetic) network by
characterizing those level-1 networks for which an encoding in terms of one (or
equivalently all) of the above collections exists. Given that this type of
network forms the first layer of the rich hierarchy of level-k networks, k a
non-negative integer, it is natural to wonder whether our arguments could be
extended to members of that hierarchy for higher values for k. By giving
examples, we show that this is not the case
Coherent optical wavelength conversion via cavity-optomechanics
We theoretically propose and experimentally demonstrate coherent wavelength
conversion of optical photons using photon-phonon translation in a
cavity-optomechanical system. For an engineered silicon optomechanical crystal
nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5
MHz bandwidth are coherently converted over a 11.2 THz frequency span between
one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with
a 93% internal (2% external) peak efficiency. The thermal and quantum limiting
noise involved in the conversion process is also analyzed, and in terms of an
equivalent photon number signal level are found to correspond to an internal
noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi
BMP7 reduces inflammation and oxidative stress in diabetic tubulopathy
Bone morphogenetic protein 7 (BMP7) has been reported to confer renoprotective effects in acute and chronic kidney disease models, but its potential role in Type 2 diabetic nephropathy remains unknown. In cultured human proximal tubular epithelial cells (PTECs), exposure to advanced glycation end-products (AGEs) induced overexpression of intercellular adhesion molecule 1 (ICAM1), monocyte chemoattractant protein 1 (MCP1), interleukin 8 (IL-8) and interleukin 6 (IL-6), involving activation of p44/42 and p38 mitogen-activated protein kinase (MAPK) signalling. BMP7 dose-dependently attenuated AGE-induced up-regulation of ICAM1, MCP1, IL-8 and IL-6 at both mRNA and protein levels. Moreover, BMP7 suppressed AGE-induced p38 and p44/42 MAPK phosphorylation and reactive oxygen species production in PTECs. Compared with vehicle control, uninephrectomized db/db mice treated with BMP7 for 8 weeks had significantly lower urinary albumin-to-creatinine ratio (3549±816.2 μg/mg compared with 8612±2037 μg/mg, P=0.036), blood urea nitrogen (33.26±1.09 mg/dl compared with 37.49±0.89 mg/dl, P=0.006), and renal cortical expression of ICAM1 and MCP1 at both gene and protein levels. In addition, BMP7-treated animals had significantly less severe tubular damage, interstitial inflammatory cell infiltration, renal cortical p38 and p44/42 phosphorylation and lipid peroxidation. Our results demonstrate that BMP7 attenuates tubular pro-inflammatory responses in diabetic kidney disease by suppressing oxidative stress and multiple inflammatory signalling pathways including p38 and p44/42 MAPK. Its potential application as a therapeutic molecule in diabetic nephropathy warrants further investigation.postprin
Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have recently shown promise as a therapeutic tool in various types of chronic kidney disease (CKD) models. However, the mechanism of action is incompletely understood. As renal prognosis in CKD is largely determined by the degree of renal tubular injury that correlates with residual proteinuria, we hypothesized that BM-MSCs may exert modulatory effects on renal tubular inflammation and epithelial-to-mesenchymal transition (EMT) under a protein-overloaded milieu. Using a co-culture model of human proximal tubular epithelial cells (PTECs) and BM-MSCs, we showed that concomitant stimulation of BM-MSCs by albumin excess was a prerequisite for them to attenuate albumin-induced IL-6, IL-8, TNF-alpha, CCL-2, CCL-5 overexpression in PTECs, which was partly mediated via deactivation of tubular NF-kappaB signaling. In addition, albumin induced tubular EMT, as shown by E-cadherin loss and alpha-SMA, FN and collagen IV overexpression, was also prevented by BM-MSC co-culture. Albumin-overloaded BM-MSCs per se retained their tri-lineage differentiation capacity and overexpressed hepatocyte growth factor (HGF) and TNFalpha-stimulating gene (TSG)-6 via P38 and NF-kappaB signaling. Albumin-induced tubular CCL-2, CCL-5 and TNF-alpha overexpression were suppressed by recombinant HGF treatment, while the upregulation of alpha-SMA, FN and collagen IV was attenuated by recombinant TSG-6. Neutralizing HGF and TSG-6 abolished the anti-inflammatory and anti-EMT effects of BM-MSC co-culture in albumin-induced PTECs, respectively. In vivo, albumin-overloaded mice treated with mouse BM-MSCs had markedly reduced BUN, tubular CCL-2 and CCL-5 expression, alpha-SMA and collagen IV accumulation independent of changes in proteinuria. These data suggest anti-inflammatory and anti-fibrotic roles of BM-MSCs on renal tubular cells under a protein overloaded condition, probably mediated via the paracrine action of HGF and TSG-6.published_or_final_versio
- …
