159 research outputs found
The origin of large molecules in primordial autocatalytic reaction networks
Large molecules such as proteins and nucleic acids are crucial for life, yet
their primordial origin remains a major puzzle. The production of large
molecules, as we know it today, requires good catalysts, and the only good
catalysts we know that can accomplish this task consist of large molecules.
Thus the origin of large molecules is a chicken and egg problem in chemistry.
Here we present a mechanism, based on autocatalytic sets (ACSs), that is a
possible solution to this problem. We discuss a mathematical model describing
the population dynamics of molecules in a stylized but prebiotically plausible
chemistry. Large molecules can be produced in this chemistry by the coalescing
of smaller ones, with the smallest molecules, the `food set', being buffered.
Some of the reactions can be catalyzed by molecules within the chemistry with
varying catalytic strengths. Normally the concentrations of large molecules in
such a scenario are very small, diminishing exponentially with their size.
ACSs, if present in the catalytic network, can focus the resources of the
system into a sparse set of molecules. ACSs can produce a bistability in the
population dynamics and, in particular, steady states wherein the ACS molecules
dominate the population. However to reach these steady states from initial
conditions that contain only the food set typically requires very large
catalytic strengths, growing exponentially with the size of the catalyst
molecule. We present a solution to this problem by studying `nested ACSs', a
structure in which a small ACS is connected to a larger one and reinforces it.
We show that when the network contains a cascade of nested ACSs with the
catalytic strengths of molecules increasing gradually with their size (e.g., as
a power law), a sparse subset of molecules including some very large molecules
can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio
Signatures of arithmetic simplicity in metabolic network architecture
Metabolic networks perform some of the most fundamental functions in living
cells, including energy transduction and building block biosynthesis. While
these are the best characterized networks in living systems, understanding
their evolutionary history and complex wiring constitutes one of the most
fascinating open questions in biology, intimately related to the enigma of
life's origin itself. Is the evolution of metabolism subject to general
principles, beyond the unpredictable accumulation of multiple historical
accidents? Here we search for such principles by applying to an artificial
chemical universe some of the methodologies developed for the study of genome
scale models of cellular metabolism. In particular, we use metabolic flux
constraint-based models to exhaustively search for artificial chemistry
pathways that can optimally perform an array of elementary metabolic functions.
Despite the simplicity of the model employed, we find that the ensuing pathways
display a surprisingly rich set of properties, including the existence of
autocatalytic cycles and hierarchical modules, the appearance of universally
preferable metabolites and reactions, and a logarithmic trend of pathway length
as a function of input/output molecule size. Some of these properties can be
derived analytically, borrowing methods previously used in cryptography. In
addition, by mapping biochemical networks onto a simplified carbon atom
reaction backbone, we find that several of the properties predicted by the
artificial chemistry model hold for real metabolic networks. These findings
suggest that optimality principles and arithmetic simplicity might lie beneath
some aspects of biochemical complexity
Microbial catabolic activities are naturally selected by metabolic energy harvest rate
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate
Differential metabolism of Mycoplasma species as revealed by their genomes
The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall), has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms
Bootstrapping the energy flow in the beginning of life.
This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in the development of computers, the first generation making possible the calculations necessary for constructing the second one, etc. In the biogenetic upstart of an energy flow, non-metals in the lower periods of the Periodic Table of Elements would have constituted the most primitive systems, their operation being enhanced and later supplanted by elements in the higher periods that demand more energy. This bootstrapping process would put the development of the metabolisms based on the second period elements carbon, nitrogen and oxygen at the end of the evolutionary process rather than at, or even before, the biogenetic even
Two approaches to the study of the origin of life.
This paper compares two approaches that attempt to explain the origin of life, or biogenesis. The more established approach is one based on chemical principles, whereas a new, yet not widely known approach begins from a physical perspective. According to the first approach, life would have begun with - often organic - compounds. After having developed to a certain level of complexity and mutual dependence within a non-compartmentalised organic soup, they would have assembled into a functioning cell. In contrast, the second, physical type of approach has life developing within tiny compartments from the beginning. It emphasises the importance of redox reactions between inorganic elements and compounds found on two sides of a compartmental boundary. Without this boundary, ¿life¿ would not have begun, nor have been maintained; this boundary - and the complex cell membrane that evolved from it - forms the essence of life
Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis
Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions
Network analysis of human protein location
<p>Abstract</p> <p>Background</p> <p>Understanding cellular systems requires the knowledge of a protein's subcellular localization (SCL). Although experimental and predicted data for protein SCL are archived in various databases, SCL prediction remains a non-trivial problem in genome annotation. Current SCL prediction tools use amino-acid sequence features and text mining approaches. A comprehensive analysis of protein SCL in human PPI and metabolic networks for various subcellular compartments is necessary for developing a robust SCL prediction methodology.</p> <p>Results</p> <p>Based on protein-protein interaction (PPI) and metabolite-linked protein interaction (MLPI) networks of proteins, we have compared, contrasted and analysed the statistical properties across different subcellular compartments. We integrated PPI and metabolic datasets with SCL information of human proteins from LOCATE and GOA (Gene Ontology Annotation) and estimated three statistical properties: Chi-square (χ<sup>2</sup>) test, Paired Localisation Correlation Profile (PLCP) and network topological measures. For the PPI network, Pearson's chi-square test shows that for the same SCL category, twice as many interacting protein pairs are observed than estimated when compared to non-interacting protein pairs (χ<sup>2 </sup>= 1270.19, <it>P-value </it>< 2.2 × 10<sup>-16</sup>), whereas for MLPI, metabolite-linked protein pairs having the same SCL are observed 20% more than expected, compared to non-metabolite linked proteins (χ<sup>2 </sup>= 110.02, <it>P-value </it>< 2.2 x10<sup>-16</sup>). To address the issue of proteins with multiple SCLs, we have specifically used the PLCP (Pair Localization Correlation Profile) measure. PLCP analysis revealed that protein interactions are majorly restricted to the same SCL, though significant cross-compartment interactions are seen for nuclear proteins. Metabolite-linked protein pairs are restricted to specific compartments such as the mitochondrion (<it>P-value </it>< 6.0e-07), the lysosome (<it>P-value </it>< 4.7e-05) and the Golgi apparatus (<it>P-value </it>< 1.0e-15). These findings indicate that the metabolic network adds value to the information in the PPI network for the localisation process of proteins in human subcellular compartments.</p> <p>Conclusions</p> <p>The MLPI network differs significantly from the PPI network in its SCL distribution. The PPI network shows passive protein interaction, possibly due to its high false positive rate, across different subcellular compartments, which seem to be absent in the MLPI network, as the MLPI network has evolved to maintain high substrate specificity for proteins.</p
Lower glycolysis carries a higher flux than any biochemically possible alternative
The universality of many pathways of core metabolism suggests a strong role
for evolutionary selection, but it remains unclear whether existing pathways
have been selected from a large or small set of biochemical possibilities. To
address this question, we construct "in silico" all possible biochemically
feasible alternatives to the trunk pathway of glycolysis and gluconeogenesis,
one of the most highly conserved pathways in metabolism. We show that, even
though a large number of alternative pathways exist, the alternatives carry
lower flux than the real pathway under typical physiological conditions.
Alternative pathways that could potentially carry higher flux often lead to
infeasible intermediate metabolite concentrations. We also find that if
physiological conditions were different, different pathways could outperform
those found in nature. Our results demonstrate how the rules of biochemistry
restrict the alternatives that are open to evolution, and suggest that the
existing trunk pathway of glycolysis and gluconeogenesis represents a maximal
flux solution.Comment: 9 pages, 4 figure
Viability Conditions for a Compartmentalized Protometabolic System: A Semi-Empirical Approach
In this work we attempt to find out the extent to which realistic prebiotic compartments, such as fatty acid vesicles, would constrain the chemical network dynamics that could have sustained a minimal form of metabolism. We combine experimental and simulation results to establish the conditions under which a reaction network with a catalytically closed organization (more specifically, an ()-system) would overcome the potential problem of self-suffocation that arises from the limited accessibility of nutrients to its internal reaction domain. The relationship between the permeability of the membrane, the lifetime of the key catalysts and their efficiency (reaction rate enhancement) turns out to be critical. In particular, we show how permeability values constrain the characteristic time scale of the bounded protometabolic processes. From this concrete and illustrative example we finally extend the discussion to a wider evolutionary context
- …
