2,259 research outputs found
Moving from evidence-based medicine to evidence-based health.
While evidence-based medicine (EBM) has advanced medical practice, the health care system has been inconsistent in translating EBM into improvements in health. Disparities in health and health care play out through patients' limited ability to incorporate the advances of EBM into their daily lives. Assisting patients to self-manage their chronic conditions and paying attention to unhealthy community factors could be added to EBM to create a broader paradigm of evidence-based health. A perspective of evidence-based health may encourage physicians to consider their role in upstream efforts to combat socially patterned chronic disease
Postglacial expansion of the arctic keystone copepod calanus glacialis
Calanus glacialis, a major contributor to zooplankton biomass in the Arctic shelf seas, is a key link between primary production and higher trophic levels that may be sensitive to climate warming. The aim of this study was to explore genetic variation in contemporary populations of this species to infer possible changes during the Quaternary period, and to assess its population structure in both space and time. Calanus glacialis was sampled in the fjords of Spitsbergen (Hornsund and Kongsfjorden) in 2003, 2004, 2006, 2009 and 2012. The sequence of a mitochondrial marker, belonging to the ND5 gene, selected for the study was 1249 base pairs long and distinguished 75 unique haplotypes among 140 individuals that formed three main clades. There was no detectable pattern in the distribution of haplotypes by geographic distance or over time. Interestingly, a Bayesian skyline plot suggested that a 1000-fold increase in population size occurred approximately 10,000 years before present, suggesting a species expansion after the Last Glacial Maximum.GAME from the National Science Centre, the Polish Ministry of Science and Higher Education Iuventus Plus [IP2014 050573]; FCT-PT [CCMAR/Multi/04326/2013]; [2011/03/B/NZ8/02876
Fortified breakfast cereal consumed daily for 12 wk leads to a significant improvement in micronutrient intake and micronutrient status in adolescent girls: a randomised controlled trial
Background: Poor micronutrient status is reported among adolescents across Europe and USA. This may be related to the well-documented decline in the regular consumption of breakfast by this group. The regular consumption of a breakfast cereal offers a possible means to improve micronutrient status; fortified cereal is likely to have enhanced benefit. A study was conducted to determine the efficacy of the regular consumption of a fortified cereal with milk, compared with unfortified cereal, consumed either as a breakfast or a supper, in improving micronutrient intake and micronutrient status of adolescent girls.
Methods: A randomised, double-blind, placebo-controlled intervention trial was conducted in girls recruited at ages 16–19 years, from schools and colleges in Sheffield, UK. Girls were randomised to receive 50 g fortified or unfortified cereal, with 150 ml semi-skimmed milk, daily, for 12 weeks, as a breakfast or as a supper. Dietary intake was estimated using a 4-d food diary and blood collected for the assessment of nutritional status. Within-group changes were tested using a paired sample t test; two-way ANOVA was used to analyse effects of the intervention, with cereal type and time of consumption as factors, correcting for baseline values. The analysis was conducted on 71 girls who completed the study.
Results: Consumption of unfortified cereal elicited an increase in the intake of vitamins B1, B2 and B6; consumption of fortified cereal elicited increases in vitamins B1, B2, B6, B12, folate and iron (P < 0.001) and of vitamin D (P = 0.007), all increases were significantly greater than for unfortified cereal. Consumption of the fortified cereal also led to a significant improvement in biomarkers of status for vitamins B2, B12, folate and of iron, compared with girls receiving the unfortified cereal, and maintained vitamin D status, in contrast with the girls receiving the unfortified cereal (P < 0.001).
Conclusions: The daily consumption of cereal with milk for 12 weeks by adolescent girls, increased intakes of micronutrients. The consumption of fortified cereal elicited greater increases than for unfortified cereal and improved biomarkers of micronutrient status. The findings justify strategies to encourage the consumption of fortified cereal with milk by adolescents, either as a breakfast or a supper
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Factors associated with recurrence and survival length following relapse in patients with neuroblastoma
Background: Despite therapeutic advances, survival following relapse for neuroblastoma patients remains poor. We investigated clinical and biological factors associated with length of progression-free and overall survival following relapse in UK neuroblastoma patients. Methods: All cases of relapsed neuroblastoma, diagnosed during 1990-2010, were identified from four Paediatric Oncology principal treatment centres. Kaplan-Meier and Cox regression analyses were used to calculate post-relapse overall survival (PROS), post-relapse progression-free survival (PRPFS) between relapse and further progression, and to investigate influencing factors. Results: One hundred eighty-nine cases were identified from case notes, 159 (84.0%) high risk and 17 (9.0%), unresectable, MYCN non-amplified (non-MNA) intermediate risk (IR). For high-risk patients diagnosed >2000, median PROS was 8.4 months (interquartile range (IQR)=3.0-17.4) and median PRPFS was 4.7 months (IQR=2.1-7.1). For IR, unresectable non-MNA patients, median PROS was 11.8 months (IQR 9.0-51.6) and 5-year PROS was 24% (95% CI 7-45%). MYCN amplified (MNA) disease and bone marrow metastases at diagnosis were independently associated with worse PROS for high-risk cases. Eighty percent of high-risk relapses occurred within 2 years of diagnosis compared with 50% of unresectable non-MNA IR disease. Conclusions: Patients with relapsed HR neuroblastomas should be treatment stratified according to MYCN status and PRPFS should be the primary endpoint in early phase clinical trials. The failure to salvage the majority of IR neuroblastoma is concerning, supporting investigation of intensification of upfront treatment regimens in this group to determine whether their use would diminish likelihood of relapse
Curcumin-rich curry diet and pulmonary function in Asian older adults
10.1371/journal.pone.0051753PLoS ONE71
The Promise of Single-cell Technology in Providing New Insights into the Molecular Heterogeneity and Management of Acute Lymphoblastic Leukemia
Drug resistance and treatment failure in pediatric acute lymphoblastic leukemia (ALL) are in part driven by tumor heterogeneity and clonal evolution. Although bulk tumor genomic analyses have provided some insight into these processes, single-cell sequencing has emerged as a powerful technique to profile individual cells in unprecedented detail. Since the introduction of single-cell RNA sequencing, we now have the capability to capture not only transcriptomic, but also genomic, epigenetic, and proteomic variation between single cells separately and in combination. This rapidly evolving field has the potential to transform our understanding of the fundamental biology of pediatric ALL and guide the management of ALL patients to improve their clinical outcome. Here, we discuss the impact single-cell sequencing has had on our understanding of tumor heterogeneity and clonal evolution in ALL and provide examples of how single-cell technology can be integrated into the clinic to inform treatment decisions for children with high-risk disease
Boron isotopes in foraminifera : systematics, biomineralisation, and CO2 reconstruction
Funding: Fellowship from University of St Andrews, $100 (pending) from Richard Zeebe, UK NERC grants NE/N003861/1 and NE/N011716/1.The boron isotope composition of foraminifera provides a powerful tracer for CO2 change over geological time. This proxy is based on the equilibrium of boron and its isotopes in seawater, which is a function of pH. However while the chemical principles underlying this proxy are well understood, its reliability has previously been questioned, due to the difficulty of boron isotope (δ11B) analysis on foraminferal samples and questions regarding calibrations between δ11B and pH. This chapter reviews the current state of the δ11B-pH proxy in foraminfera, including the pioneering studies that established this proxy’s potential, and the recent work that has improved understanding of boron isotope systematics in foraminifera and applied this tracer to the geological record. The theoretical background of the δ11B-pH proxy is introduced, including an accurate formulation of the boron isotope mass balance equations. Sample preparation and analysis procedures are then reviewed, with discussion of sample cleaning, the potential influence of diagenesis, and the strengths and weaknesses of boron purification by column chromatography versus microsublimation, and analysis by NTIMS versus MC-ICPMS. The systematics of boron isotopes in foraminifera are discussed in detail, including results from benthic and planktic taxa, and models of boron incorporation, fractionation, and biomineralisation. Benthic taxa from the deep ocean have δ11B within error of borate ion at seawater pH. This is most easily explained by simple incorporation of borate ion at the pH of seawater. Planktic foraminifera have δ11B close to borate ion, but with minor offsets. These may be driven by physiological influences on the foraminiferal microenvironment; a novel explanation is also suggested for the reduced δ11B-pH sensitivities observed in culture, based on variable calcification rates. Biomineralisation influences on boron isotopes are then explored, addressing the apparently contradictory observations that foraminifera manipulate pH during chamber formation yet their δ11B appears to record the pH of ambient seawater. Potential solutions include the influences of magnesium-removal and carbon concentration, and the possibility that pH elevation is most pronounced during initial chamber formation under favourable environmental conditions. The steps required to reconstruct pH and pCO2 from δ11B are then reviewed, including the influence of seawater chemistry on boron equilibrium, the evolution of seawater δ11B, and the influence of second carbonate system parameters on δ11B-based reconstructions of pCO2. Applications of foraminiferal δ11B to the geological record are highlighted, including studies that trace CO2 storage and release during recent ice ages, and reconstructions of pCO2 over the Cenozoic. Relevant computer codes and data associated with this article are made available online.Publisher PDFPeer reviewe
Properties of local interactions and their potential value in complementing genome-wide association studies
Local interactions between neighbouring SNPs are hypothesized to be able to capture variants missing from genome-wide association studies (GWAS) via haplotype effects but have not been thoroughly explored. We have used a new high-throughput analysis tool to probe this underexplored area through full pair-wise genome scans and conventional GWAS in diastolic and systolic blood pressure and six metabolic traits in the Northern Finland Birth Cohort 1966 (NFBC1966) and the Atherosclerosis Risk in Communities study cohort (ARIC). Genome-wide significant interactions were detected in ARIC for systolic blood pressure between PLEKHA7 (a known GWAS locus for blood pressure) and GPR180 (which plays a role in vascular remodelling), and also for triglycerides as local interactions within the 11q23.3 region (replicated significantly in NFBC1966), which notably harbours several loci (BUD13, ZNF259 and APOA5) contributing to triglyceride levels. Tests of the local interactions within the 11q23.3 region conditional on the top GWAS signal suggested the presence of two independent functional variants, each with supportive evidence for their roles in gene regulation. Local interactions captured 9 additional GWAS loci identified in this study (3 significantly replicated) and 73 from previous GWAS (24 in the eight traits and 49 in related traits). We conclude that the detection of local interactions requires adequate SNP coverage of the genome and that such interactions are only likely to be detectable between SNPs in low linkage disequilibrium. Analysing local interactions is a potentially valuable complement to GWAS and can provide new insights into the biology underlying variation in complex traits
- …
