3,695 research outputs found
Kerja baikpulih bangunan komersial yang terbengkalai di kawasan Melaka Tengah
Industri pembinaan merupakan satu sektor yang menjadi pemangkin kepada pertumbuhan sosio-ekonomi dan sebahagian besar sumbernya digunakan kearah pembangunan yang pesat dalam pentadbiran negara. Projek-projek mega seperti Kuala lumpur internationa airport (KLIA), Pusat pentadbiran kerajaan di putrjaya dan banyak lagi pembinaan bangunan komersial yang menjadi tanda aras perkembangan yang memberangsangkan. Selain dari itu, pembangunan bagi sesuatu kawasan menyebabkan pertambahan penduduk. Ini menunjuk industri binaan merupakan salah satu sektor yang menyumbang dalam pembangunan dari aspek sosial dan ekonomi kepada sesuatu kawasan. Walaupun banyak teknologi dalam industri pembinaan telah digunakan pada masa kini, ia masih lagi tidak dapat mengawal kehadiran bangunan yang terbiar di Malaysia dan kesan kewujudan bangunan terbiar itu mengakibatkan kerugian kepada pelbagai pihak dan mengancam keselamatan penduduk sekitarnya
The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.
BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury
Can We Really Prevent Suicide?
Every year, suicide is among the top 20 leading causes of death globally for all ages. Unfortunately, suicide is difficult to prevent, in large part because the prevalence of risk factors is high among the general population. In this review, clinical and psychological risk factors are examined and methods for suicide prevention are discussed. Prevention strategies found to be effective in suicide prevention
include means restriction, responsible media coverage, and general public education, as well identification methods such as screening, gatekeeper training, and primary care physician education. Although the treatment for preventing suicide is difficult, follow-up that includes pharmacotherapy, psychotherapy, or both may be useful. However, prevention methods cannot be restricted to the individual. Community, social, and policy interventions will also be essentia
Lifshitz-like space-time from intersecting branes in string/M theory
We construct 1/4 BPS, threshold F-D bound states (with )
of type II string theories by applying S- and T-dualities to the D1-D5 system
of type IIB string theory. These are different from the known 1/2 BPS,
non-threshold F-D bound states. The near horizon limits of these solutions
yield Lifshitz-like space-times with varying dynamical critical exponent
, for , along with the hyperscaling violation exponent
, showing how Lifshitz-like space-time can be
obtained from string theory. The dilatons are in general non-constant (except
for ). We discuss the holographic RG flows and the phase structures of
these solutions. For , we do not get a Lifshitz-like space-time, but the
near horizon limit in this case leads to an AdS space.Comment: 20 pages, no figure, v2: proper identification of hyperscaling
violation exponent has been made, abstract and the text has been changed
accordingly, note added, v3: minor changes, refs added, version to appear in
JHE
Two-Particle-Self-Consistent Approach for the Hubbard Model
Even at weak to intermediate coupling, the Hubbard model poses a formidable
challenge. In two dimensions in particular, standard methods such as the Random
Phase Approximation are no longer valid since they predict a finite temperature
antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The
Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as
particle conservation, the Pauli principle, the local moment and local charge
sum rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. Internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical
review of TPSC along with a short summary of existing results and two case
studies: a) the opening of a pseudogap in two dimensions when the correlation
length is larger than the thermal de Broglie wavelength, and b) the conditions
for the appearance of d-wave superconductivity in the two-dimensional Hubbard
model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems",
Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages.
Misprint in Eq.(23) corrected (thanks D. Bergeron
Interstellar Turbulence II: Implications and Effects
Interstellar turbulence has implications for the dispersal and mixing of the
elements, cloud chemistry, cosmic ray scattering, and radio wave propagation
through the ionized medium. This review discusses the observations and theory
of these effects. Metallicity fluctuations are summarized, and the theory of
turbulent transport of passive tracers is reviewed. Modeling methods, turbulent
concentration of dust grains, and the turbulent washout of radial abundance
gradients are discussed. Interstellar chemistry is affected by turbulent
transport of various species between environments with different physical
properties and by turbulent heating in shocks, vortical dissipation regions,
and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered
and accelerated in turbulent magnetic waves and shocks, and they generate
turbulence on the scale of their gyroradii. Radio wave scintillation is an
important diagnostic for small scale turbulence in the ionized medium, giving
information about the power spectrum and amplitude of fluctuations. The theory
of diffraction and refraction is reviewed, as are the main observations and
scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and
Astrophysic
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Chiral superconductivity from repulsive interactions in doped graphene
Author Manuscript 17 Sep 2011Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron–electron interactions. Using a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4π around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from electron–electron repulsion, and will open the door to applications of chiral superconductivity
- …
