326 research outputs found
Coherent optical wavelength conversion via cavity-optomechanics
We theoretically propose and experimentally demonstrate coherent wavelength
conversion of optical photons using photon-phonon translation in a
cavity-optomechanical system. For an engineered silicon optomechanical crystal
nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5
MHz bandwidth are coherently converted over a 11.2 THz frequency span between
one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with
a 93% internal (2% external) peak efficiency. The thermal and quantum limiting
noise involved in the conversion process is also analyzed, and in terms of an
equivalent photon number signal level are found to correspond to an internal
noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi
Electromagnetically Induced Transparency and Slow Light with Optomechanics
Controlling the interaction between localized optical and mechanical
excitations has recently become possible following advances in micro- and
nano-fabrication techniques. To date, most experimental studies of
optomechanics have focused on measurement and control of the mechanical
subsystem through its interaction with optics, and have led to the experimental
demonstration of dynamical back-action cooling and optical rigidity of the
mechanical system. Conversely, the optical response of these systems is also
modified in the presence of mechanical interactions, leading to strong
nonlinear effects such as Electromagnetically Induced Transparency (EIT) and
parametric normal-mode splitting. In atomic systems, seminal experiments and
proposals to slow and stop the propagation of light, and their applicability to
modern optical networks, and future quantum networks, have thrust EIT to the
forefront of experimental study during the last two decades. In a similar
fashion, here we use the optomechanical nonlinearity to control the velocity of
light via engineered photon-phonon interactions. Our results demonstrate EIT
and tunable optical delays in a nanoscale optomechanical crystal device,
fabricated by simply etching holes into a thin film of silicon (Si). At low
temperature (8.7 K), we show an optically-tunable delay of 50 ns with
near-unity optical transparency, and superluminal light with a 1.4 microseconds
signal advance. These results, while indicating significant progress towards an
integrated quantum optomechanical memory, are also relevant to classical signal
processing applications. Measurements at room temperature and in the analogous
regime of Electromagnetically Induced Absorption (EIA) show the utility of
these chip-scale optomechanical systems for optical buffering, amplification,
and filtering of microwave-over-optical signals.Comment: 15 pages, 9 figure
Testing for ocean acidification during the Early Toarcian using δ44/40Ca and δ88/86Sr
During the Early Toarcian, volcanic gases released by the Karoo-Ferrar large igneous province are widely believed to have caused severe environmental disturbances, including ocean acidification. Here we show records of δ Ca and δ Sr through the Early Toarcian, as recorded in three groups of biogenic calcite: Megateuthididae belemnites, Passaloteuthididae belemnites, and brachiopods of the species Soaresirhynchia bouchardi. We evaluate the data to eliminate the influence on isotopic composition of varying temperature, calcification rate, and salinity, through the section that may mask the environmental signals. Neither δ Ca nor δ Sr show negative isotope excursions across the suggested acidification interval as would be expected had acidification occurred. A profile of δ B, re-interpreted from a published study, shows no variation through the interval. Taken together, these data provide little support for ocean acidification at this time. In our belemnites, values of δ Sr are independent of temperature or Sr/Ca. For brachiopods, too few data are available to determine whether such dependences exist. Values of δ Ca show a weak temperature control of magnitude +0.020 ± 0.004 ‰/°C (2 s.d.). In belemnites, δ Ca also correlates positively with Mg/Ca and Sr/Ca. 44/40 88/86 44/40 88/86 11 88/86 44/40 44/4
Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells
There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT- XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal instillation to 18, 54, or 162 μg of Mitsui7/mouse. FE1 cells were incubated with 12.5, 25 and 100 μg/ml of Mitsui7. Tissue and cell samples were collected at 24 hours post-exposure. DNA microarrays were employed to establish mechanistic differences and similarities between the two models. Microarray results were confirmed using gene-specific RT-qPCR. Bronchoalveolar lavage (BAL) fluid was assessed for indications of inflammation in vivo. A strong dose-dependent activation of acute phase and inflammation response was observed in mouse lungs reflective mainly of an inflammatory response as observed in BAL. In vitro, a wide variety of core cellular functions were affected including transcription, cell cycle, and cellular growth and proliferation. Oxidative stress, fibrosis and inflammation processes were altered in both models. Although there were similarities observed between the two models at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting animal with in vitro testing
Structurally abnormal type II collagen in a severe form of Kniest dysplasia caused by an exon 24 skipping mutation.
Type II collagen mutations have been identified in a phenotypic continuum of chondrodysplasias that range widely in clinical severity. They include achondrogenesis type II, hypochondrogenesis, spondyloepiphyseal dysplasia congenita, spondyloepimetaphyseal dysplasia, Kniest dysplasia, and Stickler syndrome. We report here results that define the underlying genetic defect and consequent altered structure of assembled type II collagen in a neonatal lethal form of Kniest dysplasia. Electrophoresis of a cyanogen bromide (CNBr) (CB) digest of sternal cartilage revealed an alpha1(II)CB11 peptide doublet and a slightly retarded mobility for all major CB peptides, which implied post-translational overmodification. Further peptide mapping and sequence analysis of CB11 revealed equal amounts of a normal alpha1(II) sequence and a chain lacking the 18 residues (361-378 of the triple helical domain) corresponding to exon 24. Sequence analysis of an amplified genomic DNA fragment identified a G to A transition in the +5 position of the splice donor consensus sequence of intron 24 in one allele. Cartilage matrix analysis showed that the short alpha1(II) chain was present in collagen molecules that had become cross-linked into fibrils. Trypsin digestion of the pepsin-extracted native type II collagen selectively cleaved the normal length alpha1(II) chains within the exon 24 domain. These findings support a hypothesis that normal and short alpha-chains had combined to form heterotrimeric molecules in which the chains were in register in both directions from the deletion site, accommodated effectively by a loop out of the normal chain exon 24 domain. Such an accommodation, with potential overall shortening of the helical domain and hence misalignment of intermolecular relationships within fibrils, offers a common molecular mechanism by which a group of different mutations might act to produce the Kniest phenotype
Post-injection delirium/sedation syndrome in patients with schizophrenia treated with olanzapine long-acting injection, I: analysis of cases
<p>Abstract</p> <p>Background</p> <p>An advance in the treatment of schizophrenia is the development of long-acting intramuscular formulations of antipsychotics, such as olanzapine long-acting injection (LAI). During clinical trials, a post-injection syndrome characterized by signs of delirium and/or excessive sedation was identified in a small percentage of patients following injection with olanzapine LAI.</p> <p>Methods</p> <p>Safety data from all completed and ongoing trials of olanzapine LAI were reviewed for possible cases of this post-injection syndrome. Descriptive analyses were conducted to characterize incidence, clinical presentation, and outcome. Regression analyses were conducted to assess possible risk factors.</p> <p>Results</p> <p>Based on approximately 45,000 olanzapine LAI injections given to 2054 patients in clinical trials through 14 October 2008, post-injection delirium/sedation syndrome occurred in approximately 0.07% of injections or 1.4% of patients (30 cases in 29 patients). Symptomatology was consistent with olanzapine overdose (e.g., sedation, confusion, slurred speech, altered gait, or unconsciousness). However, no clinically significant decreases in vital signs were observed. Symptom onset ranged from immediate to 3 to 5 hours post injection, with a median onset time of 25 minutes post injection. All patients recovered within 1.5 to 72 hours, and the majority continued to receive further olanzapine LAI injections following the event. No clear risk factors were identified.</p> <p>Conclusions</p> <p>Post-injection delirium/sedation syndrome can be readily identified based on symptom presentation, progression, and temporal relationship to the injection, and is consistent with olanzapine overdose following probable accidental intravascular injection of a portion of the olanzapine LAI dose. Although there is no specific antidote for olanzapine overdose, patients can be treated symptomatically as needed. Special precautions include use of proper injection technique and a post-injection observation period.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov ID; URL: <url>http://http//www.clinicaltrials.gov/</url>: NCT00094640, NCT00088478, NCT00088491, NCT00088465, and NCT00320489.</p
Collection of Epithelial Cells from Rodent Mammary Gland Via Laser Capture Microdissection Yielding High-Quality RNA Suitable for Microarray Analysis
Laser capture microdissection (LCM) enables collection of cell populations highly enriched for specific cell types that have the potential of yielding critical information about physiological and pathophysiological processes. One use of cells collected by LCM is for gene expression profiling. Samples intended for transcript analyses should be of the highest quality possible. RNA degradation is an ever-present concern in molecular biological assays, and LCM is no exception. This paper identifies issues related to preparation, collection, and processing in a lipid-rich tissue, rodent mammary gland, in which the epithelial to stromal cell ratio is low and the stromal component is primarily adipocytes, a situation that presents numerous technical challenges for high-quality RNA isolation. Our goal was to improve the procedure so that a greater probe set present call rate would be obtained when isolated RNA was evaluated using Affymetrix microarrays. The results showed that the quality of RNA isolated from epithelial cells of both mammary gland and mammary adenocarcinomas was high with a probe set present call rate of 65% and a high signal-to-noise ratio
Tools for crushing diatoms – opal teeth in copepods feature a rubber-like bearing composed of resilin
Diatoms are generally known for superior mechanical properties of their mineralised shells. Nevertheless, many copepod crustaceans are able to crush such shells using their mandibles. This ability very likely requires feeding tools with specific material compositions and properties. For mandibles of several copepod species silica-containing parts called opal teeth have been described. The present study reveals the existence of complex composite structures, which contain, in addition to silica, the soft and elastic protein resilin and form opal teeth with a rubber-like bearing in the mandibles of the copepod Centropages hamatus. These composite structures likely increase the efficiency of the opal teeth while simultaneously reducing the risk of mechanical damage. They are supposed to have coevolved with the diatom shells in the evolutionary arms race, and their development might have been the basis for the dominance of the copepods within today's marine zooplankton
Peroxisome proliferators-activated alpha agonist treatment ameliorates hepatic damage in rats with obstructive jaundice: an experimental study
<p>Abstract</p> <p>Background</p> <p>Peroxisome proliferators-activated receptor alpha (PPARα) activation modulates cholesterol metabolism and suppresses bile acid synthesis. This study aims to evaluate the effect of short-term administration of fenofibrate, a PPARα agonist, on proinflammatory cytokines, apoptosis, and hepatocellular damage in cholestasis.</p> <p>Methods</p> <p>Forty male Wistar rats were randomly divided into four groups: I = sham operated, II = bile duct ligation (BDL), III = BDL + vehicle (gum Arabic), IV = BDL + fenofibrate (100 mg/kg/day). All rats were sacrificed on 7<sup>th </sup>day after obtaining blood samples and liver tissue. Total bilirubin, aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), gamma-glutamyl transferase, (GGT), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1 β), and total bile acid (TBA) in serum, and liver damage scores; portal inflammation, necrosis, bile duct number, in liver tissue were evaluated. Apoptosis in liver was also assessed by immunohistochemical staining.</p> <p>Results</p> <p>Fenofibrate administration significantly reduced serum total bilirubin, AST, ALT, ALP, and GGT, TNF-α, IL-1 β levels, and TBA (<it>P </it>< 0.01). Hepatic portal inflammation, hepatic necrosis, number of the bile ducts and apoptosis in rats with BDL were more prominent than the sham-operated animals (<it>P </it>< 0.01). PPARα induction improved all histopathologic parameters (<it>P </it>< 0.01), except for the number of the bile duct, which was markedly increased by fenofibrate therapy (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Short-term administration of fenofibrate to the BDL rats exerts beneficial effects on hepatocellular damage and apoptosis.</p
- …
