56 research outputs found

    The potential for coral reef establishment through free-living stabilization

    Get PDF
    Corals thrive in a variety of environments, from low wave and tidal energy lagoons, to high energy tidal reef flats, but remain dependent upon suitable substrate. Herein we reviewed the phenomenon of free-living corals (coralliths), examined whether they have the capacity to create their own stable habitat in otherwise uninhabitable, poor substrate environments through 'free-living stabilization', and explore their potential ecological role on coral reefs. This stabilization could be achieved by coral settlement and survival on mobile substrate, with subsequent growth into free-living coralliths until a critical mass is reached that prevents further movement. This allows for secondary reef colonization by other coral species. To preliminarily test this hypothesis we provide evidence that the potential to support secondary coral colonisation increases with corallith size. Due to the limited diversity of corallith species observed here and in the literature, and the lack of physiological differences exhibited by coralliths here to static controls, it seems likely that only a small selection of coral species have the ability to form coralliths, and the potential to create their own stable habitat

    The Genetic Signatures of Noncoding RNAs

    Get PDF
    The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non–protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses

    Corticosteroids in ophthalmology : drug delivery innovations, pharmacology, clinical applications, and future perspectives

    Get PDF

    Amorphous Computing

    No full text

    Amorphous Computing

    No full text
    corecore