1,445 research outputs found

    Moisture transport by Atlantic tropical cyclones onto the North American continent

    Get PDF
    Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean 14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 % (range 9 to 11 %) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Nino-Southern Oscillation phenomenon

    Spontaneous Stratification in Granular Mixtures

    Full text link
    Granular materials size segregate when exposed to external periodic perturbations such as vibrations. Moreover, mixtures of grains of different sizes spontaneously segregate in the absence of external perturbations: when a mixture is simply poured onto a pile, the large grains are more likely to be found near the base, while the small grains are more likely to be near the top. Here, we report a spontaneous phenomenon arising when we pour a mixture between two vertical plates: the mixture spontaneously stratifies into alternating layers of small and large grains whenever the large grains are rougher than the small grains. In contrast, we find only spontaneous segregation when the large grains are more rounded than the small grains. The stratification is related to the occurrence of avalanches; during each avalanche the grains comprising the avalanche spontaneously stratify into a pair of layers through a "kink" mechanism, with the small grains forming a sublayer underneath the layer of large grains.Comment: 4 pages, 6 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Eliciting a predatory response in the eastern corn snake (Pantherophis guttatus) using live and inanimate sensory stimuli: implications for managing invasive populations

    Get PDF
    North America's Eastern corn snake (Pantherophis guttatus) has been introduced to several islands throughout the Caribbean and Australasia where it poses a significant threat to native wildlife. Invasive snake control programs often involve trapping with live bait, a practice that, as well as being costly and labour intensive, raises welfare and ethical concerns. This study assessed corn snake response to live and inanimate sensory stimuli in an attempt to inform possible future trapping of the species and the development of alternative trap lures. We exposed nine individuals to sensory cues in the form of odour, visual, vibration and combined stimuli and measured the response (rate of tongue-flick [RTF]). RTF was significantly higher in odour and combined cues treatments, and there was no significant difference in RTF between live and inanimate cues during odour treatments. Our findings suggest chemical cues are of primary importance in initiating predation and that an inanimate odour stimulus, absent of simultaneous visual and vibratory cues, is a potential low-cost alternative trap lure for the control of invasive corn snake populations

    Genomic Runs of Homozygosity Record Population History and Consanguinity

    Get PDF
    The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (N(e)), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental N(e) (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects

    Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models.

    Get PDF
    Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase-1 (COX-1) and COX-2 enzymes. The NLRP3 inflammasome is a multi-protein complex responsible for the processing of the proinflammatory cytokine interleukin-1β and is implicated in many inflammatory diseases. Here we show that several clinically approved and widely used NSAIDs of the fenamate class are effective and selective inhibitors of the NLRP3 inflammasome via inhibition of the volume-regulated anion channel in macrophages, independently of COX enzymes. Flufenamic acid and mefenamic acid are efficacious in NLRP3-dependent rodent models of inflammation in air pouch and peritoneum. We also show therapeutic effects of fenamates using a model of amyloid beta induced memory loss and a transgenic mouse model of Alzheimer's disease. These data suggest that fenamate NSAIDs could be repurposed as NLRP3 inflammasome inhibitors and Alzheimer's disease therapeutics

    Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability

    Get PDF
    Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly increased (or decreased) its stability. However, Arg-rich de novo sequences (ER3 (AEEERRR) and EK1R2 (AEEEKRR)) aggregated. Combining a PDB analysis with molecular modelling provides a rational explanation, demonstrating that Glu and Arg form salt bridges more commonly, utilize a wider range of rotamer conformations, and are more dynamic than Glu–Lys. This promiscuous nature of Arg helps explain the increased propensity of de novo Arg-rich SAHs to aggregate. Importantly, the specific K:R ratio is likely to be important in determining helical stability in de-novo and naturally-occurring polypeptides, giving new insight into how single α-helices are stabilized

    Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease?

    Get PDF
    Detection of incipient Alzheimer disease (AD) pathophysiology is critical to identify preclinical individuals and target potentially disease-modifying therapies towards them. Current neuroimaging and biomarker research is strongly focused in this direction, with the aim of establishing AD fingerprints to identify individuals at high risk of developing this disease. By contrast, cognitive fingerprints for incipient AD are virtually non-existent as diagnostics and outcomes measures are still focused on episodic memory deficits as the gold standard for AD, despite their low sensitivity and specificity for identifying at-risk individuals. This Review highlights a novel feature of cognitive evaluation for incipient AD by focusing on spatial navigation and orientation deficits, which are increasingly shown to be present in at-risk individuals. Importantly, the navigation system in the brain overlaps substantially with the regions affected by AD in both animal models and humans. Notably, spatial navigation has fewer verbal, cultural and educational biases than current cognitive tests and could enable a more uniform, global approach towards cognitive fingerprints of AD and better cognitive treatment outcome measures in future multicentre trials. The current Review appraises the available evidence for spatial navigation and/or orientation deficits in preclinical, prodromal and confirmed AD and identifies research gaps and future research priorities

    Chromatin and epigenetics: current biophysical views

    Get PDF
    Recent advances in high-throughput sequencing experiments and their theoretical descriptions have determined fast dynamics of the "chromatin and epigenetics" field, with new concepts appearing at high rate. This field includes but is not limited to the study of DNA-protein-RNA interactions, chromatin packing properties at different scales, regulation of gene expression and protein trafficking in the cell nucleus, binding site search in the crowded chromatin environment and modulation of physical interactions by covalent chemical modifications of the binding partners. The current special issue does not pretend for the full coverage of the field, but it rather aims to capture its development and provide a snapshot of the most recent concepts and approaches. Eighteen open-access articles comprising this issue provide a delicate balance between current theoretical and experimental biophysical approaches to uncover chromatin structure and understand epigenetic regulation, allowing free flow of new ideas and preliminary results

    Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to 20×102120\times10^{21} POT

    Get PDF
    18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figuresRecent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of 7.8×10217.8\times 10^{21} protons-on-target to 20×102120\times 10^{21} protons-on-target,aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), NRC and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SERI, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, and GridPP in the United Kingdom. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), H2020 Grant No. RISE-GA644294-JENNIFER, EU; JSPS, Japan; Royal Society, UK; and the DOE Early Career program, USA. CNRS/IN2P3: Centre National de la Recherche ScientifiqueInstitut National de Physique Nucleaire et de Physique des Particules RSF: Russian Science Foundation MES: Ministry of Education and Science, Russia ERDF: European Regional Development Fund SNSF: Swiss National Science Foundation SER (should be SERI): State Secretariat for Education, Research and Innovatio

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore