616 research outputs found
Role of CD56-expressing immature biliary epithelial cells in biliary atresia
published_or_final_versio
Characterizing the pulsations of the ZZ Ceti star KUV 02464+3239
We present the results on period search and modeling of the cool DAV star KUV
02464+3239. Our observations resolved the multiperiodic pulsational behaviour
of the star. In agreement with its position near the red edge of the DAV
instability strip, it shows large amplitude, long period pulsation modes, and
has a strongly non-sinusoidal light curve. We determined 6 frequencies as
normal modes and revealed remarkable short-term amplitude variations. A
rigorous test was performed for the possible source of amplitude variation:
beating of modes, effect of noise, unresolved frequencies or rotational
triplets. Among the best-fit models resulting from a grid search, we selected 3
that gave l=1 solutions for the largest amplitude modes. These models had
masses of 0.645, 0.650 and 0.680 M_Sun. The 3 `favoured' models have M_H
between 2.5x10^-5 - 6.3x10^-6 M_* and give 14.2 - 14.8 mas seismological
parallax. The 0.645 M_Sun (11400 K) model also matches the spectroscopic log g
and T_eff within 1 sigma. We investigated the possibility of mode trapping and
concluded that while it can explain high amplitude modes, it is not required.Comment: 11 pages, 8 figures, accepted for publication in MNRA
Recommended from our members
Cross-examination: The Testimony of Children With and Without Intellectual Disabilities
The present study assessed how children with a range of cognitive abilities fared during a mock cross-examination. Ninety children (aged 4 to 11 years; 18 with intellectual disabilities [ID], 13 with borderline intellectual disabilities [BID], and 59 who were typically developing [TD]) witnessed a staged event, participated in an initial forensic interview (a few days later), and were cross-examined by a barrister-in-training (ten months later). During cross-examination, 98% of all children changed at least one response from their initial interview when challenged. However, group differences in performance (total number of changed responses, ‘resistance’ to challenges), controlling for age and memory for event details, were not significant or did not prove reliable at the level of individual group contrasts. Overall, little robust evidence for group differences in performance on crossexamination could be identified, and memory for event details was the most reliable predictor of performance
New Mechanics of Traumatic Brain Injury
The prediction and prevention of traumatic brain injury is a very important
aspect of preventive medical science. This paper proposes a new coupled
loading-rate hypothesis for the traumatic brain injury (TBI), which states that
the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an
impulsive loading that strikes the head in several coupled degrees-of-freedom
simultaneously. To show this, based on the previously defined covariant force
law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions
within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt
dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid
discontinuous deformations: translational dislocations and rotational
disclinations. Brain's dislocations and disclinations, caused by the
SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum
brain model.
Keywords: Traumatic brain injuries, coupled loading-rate hypothesis,
Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and
disclinationsComment: 18 pages, 1 figure, Late
Characteristics of outdoor falls among older people: A qualitative study
Background Falls are a major threat to older people’s health and wellbeing. Approximately half of falls occur in outdoor environments but little is known about the circumstances in which they occur. We conducted a qualitative study to explore older people’s experiences of outdoor falls to develop understanding of how they may be prevented. Methods We conducted nine focus groups across the UK (England, Wales, and Scotland). Our sample was from urban and rural settings and different environmental landscapes. Participants were aged 65+ and had at least one outdoor fall in the past year. We analysed the data using framework and content analyses. Results Forty-four adults aged 65 – 92 took part and reported their experience of 88 outdoor falls. Outdoor falls occurred in a variety of contexts, though reports suggested the following scenarios may have been more frequent: when crossing a road, in a familiar area, when bystanders were around, and with an unreported or unknown attribution. Most frequently, falls resulted in either minor or moderate injury, feeling embarrassed at the time of the fall, and anxiety about falling again. Ten falls resulted in fracture, but no strong pattern emerged in regard to the contexts of these falls. Anxiety about falling again appeared more prevalent among those that fell in urban settings and who made more visits into their neighbourhood in a typical week. Conclusions This exploratory study has highlighted several aspects of the outdoor environment that may represent risk factors for outdoor falls and associated fear of falling. Health professionals are recommended to consider outdoor environments as well as the home setting when working to prevent falls and increase mobility among older people
Breast feeding and intergenerational social mobility: what are the mechanisms?
Objective To investigate the association between breast feeding and intergenerational social mobility and the possible mediating role of neurological and stress mechanisms. Design Secondary analysis of data from the 1958 and the 1970 British Cohort Studies. Setting Longitudinal study of individuals born in Britain during 1 week in 1958 and 1970. Participants 17 419 individuals participated in the 1958 cohort and 16 771 in the 1970 cohort. The effect of breast feeding on intergenerational social mobility from age 10/11 to age 33/34 was analysed after multiple imputations to fill in missing data and propensity score matching on a wide range of confounders measured in childhood (1958 cohort N=16 039-16 154; 1970 cohort N=16 255-16 361). Main outcome measures Own Registrar General's Social Class (RGSC) at 33/34 years adjusted for father's RGSC at 10/11 years, gender and their interaction. Results Breastfed individuals were more likely to be upwardly mobile (1958 cohort: OR 1.24 95% CI 1.12 to 1.38; 1970 cohort: OR 1.24 95% CI 1.12 to 1.37) and less likely to be downwardly mobile (1958 cohort: OR 0.81 95% CI 0.73 to 0.90; 1970 cohort: OR 0.79 95% CI 0.71 to 0.88). In an ordinal regression model, markers of neurological development (cognitive test scores) and stress (emotional stress scores) accounted for approximately 36% of the relationship between breast feeding and social mobility. Conclusions Breast feeding increased the odds of upward social mobility and decreased the odds of downward mobility. Consistent with a causal explanation, the findings were robust to matching on a large number of observable variables and effect sizes were alike for two cohorts with different social distributions of breast feeding. The effect was mediated in part through neurological and stress mechanisms
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
The Formation of the First Massive Black Holes
Supermassive black holes (SMBHs) are common in local galactic nuclei, and
SMBHs as massive as several billion solar masses already exist at redshift z=6.
These earliest SMBHs may grow by the combination of radiation-pressure-limited
accretion and mergers of stellar-mass seed BHs, left behind by the first
generation of metal-free stars, or may be formed by more rapid direct collapse
of gas in rare special environments where dense gas can accumulate without
first fragmenting into stars. This chapter offers a review of these two
competing scenarios, as well as some more exotic alternative ideas. It also
briefly discusses how the different models may be distinguished in the future
by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First
Galaxies - Theoretical Predictions and Observational Clues", Springer
Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B.
Mobasher, in pres
Evolutionary and pulsational properties of white dwarf stars
Abridged. White dwarf stars are the final evolutionary stage of the vast
majority of stars, including our Sun. The study of white dwarfs has potential
applications to different fields of astrophysics. In particular, they can be
used as independent reliable cosmic clocks, and can also provide valuable
information about the fundamental parameters of a wide variety of stellar
populations, like our Galaxy and open and globular clusters. In addition, the
high densities and temperatures characterizing white dwarfs allow to use these
stars as cosmic laboratories for studying physical processes under extreme
conditions that cannot be achieved in terrestrial laboratories. They can be
used to constrain fundamental properties of elementary particles such as axions
and neutrinos, and to study problems related to the variation of fundamental
constants.
In this work, we review the essentials of the physics of white dwarf stars.
Special emphasis is placed on the physical processes that lead to the formation
of white dwarfs as well as on the different energy sources and processes
responsible for chemical abundance changes that occur along their evolution.
Moreover, in the course of their lives, white dwarfs cross different
pulsational instability strips. The existence of these instability strips
provides astronomers with an unique opportunity to peer into their internal
structure that would otherwise remain hidden from observers. We will show that
this allows to measure with unprecedented precision the stellar masses and to
infer their envelope thicknesses, to probe the core chemical stratification,
and to detect rotation rates and magnetic fields. Consequently, in this work,
we also review the pulsational properties of white dwarfs and the most recent
applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and
Astrophysics Revie
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
- …
