173 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Management of chemotherapy-associated febrile neutropenia
The development of febrile neutropenia during a course of chemotherapy is not only a life-threatening complication, it can also lead to a decision to reduce chemotherapy intensity in subsequent treatment cycles, thus putting patient outcomes at risk. Although there are strategies available for the primary prevention of febrile neutropenia, these are not widely used in the UK management of breast cancer. It is, therefore, paramount to have a well thought out and rigorously implemented care protocol for febrile neutropenia, involving patients, family/carers and health-care professionals in both primary and secondary care, to ensure early detection and effective management
Prophylaxis of chemotherapy-induced febrile neutropenia with granulocyte colony-stimulating factors: where are we now?
Updated international guidelines published in 2006 have broadened the scope for the use of granulocyte colony-stimulating factor (G-CSF) in supporting delivery of myelosuppressive chemotherapy. G-CSF prophylaxis is now recommended when the overall risk of febrile neutropenia (FN) due to regimen and individual patient factors is ≥20%, for supporting dose-dense and dose-intense chemotherapy and to help maintain dose density where dose reductions have been shown to compromise outcomes. Indeed, there is now a large body of evidence for the efficacy of G-CSFs in supporting dose-dense chemotherapy. Predictive tools that can help target those patients who are most at risk of FN are now becoming available. Recent analyses have shown that, by reducing the risk of FN and chemotherapy dose delays and reductions, G-CSF prophylaxis can potentially enhance survival benefits in patients receiving chemotherapy in curative settings. Accumulating data from ‘real-world’ clinical practice settings indicate that patients often receive abbreviated courses of daily G-CSF and consequently obtain a reduced level of FN protection. A single dose of PEGylated G-CSF (pegfilgrastim) may provide a more effective, as well as a more convenient, alternative to daily G-CSF. Prospective studies are needed to validate the importance of delivering the full dose intensity of standard chemotherapy regimens, with G-CSF support where appropriate, across a range of settings. These studies should also incorporate prospective evaluation of risk stratification for neutropenia and its complications
Multiple Functions for ORF75c in Murid Herpesvirus-4 Infection
All gamma-herpesviruses encode at least one homolog of the cellular enzyme formyl-glycineamide-phosphoribosyl-amidotransferase. Murid herpesvirus-4 (MuHV-4) encodes 3 (ORFs 75a, 75b and 75c), suggesting that at least some copies have acquired new functions. Here we show that the corresponding proteins are all present in virions and localize to infected cell nuclei. Despite these common features, ORFs 75a and 75b did not substitute functionally for a lack of ORF75c, as ORF75c virus knockouts were severely impaired for lytic replication in vitro and for host colonization in vivo. They showed 2 defects: incoming capsids failed to migrate to the nuclear margin following membrane fusion, and genomes that did reach the nucleus failed to initiate normal gene expression. The latter defect was associated with a failure of in-coming virions to disassemble PML bodies. The capsid transport deficit seemed to be functionally more important, since ORF75c− MuHV-4 infected both PML+ and PML− cells poorly. The original host enzyme has therefore evolved into a set of distinct and multi-functional viral tegument proteins. One important function is moving incoming capsids to the nuclear margin for viral genome delivery
Multifocality and multicentricity are not contraindications for sentinel lymph node biopsy in breast cancer surgery
BACKGROUND: After the availability of the results of validation studies, the sentinel lymph node biopsy (SLNB) has replaced routine axillary dissection (AD) as the new standard of care in early unifocal breast cancers. Multifocal (MF) and multicentric (MC) tumors have been considered a contraindication for this technique due to the possible incidence of a higher false-negative rate. This prospective study evaluates the lymphatic drainage from different tumoral foci of the breast and assesses the accuracy of SLNB in MF-MC breast cancer. PATIENTS AND METHODS: Patients with preoperative diagnosis of MF or MC infiltrating and clinically node-negative (cN0) breast carcinoma were enrolled in this study. Two consecutive groups of patients underwent SLN mapping using a different site of injection of the radioisotope tracer: a) "2ID" Group received two intradermal (ID) injections over the site of the two dominant neoplastic nodules. A lymphoscintigraphic study was performed after each injection to evaluate the route of lymphatic spreading from different sites of the breast. b) "A" Group had periareolar (A) injection followed by a conventional lymphoscintigraphy. At surgery, both radioguided SLNB (with frozen section exam) and subsequent AD were planned, regardless the SLN status. RESULTS: A total 31 patients with MF (n = 12) or MC (n = 19) invasive, cN0 cancer of the breast fulfil the selection criteria. In 2 ID Group (n = 15) the lymphoscintigraphic study showed the lymphatic pathways from two different sites of the breast which converged into one major lymphatic trunk affering to the same SLN(s) in 14 (93.3%) cases. In one (6.7%) MC cancer two different pathways were found, each of them affering to a different SLN. In A Group (n = 16) lymphoscintigraphy showed one (93.7%) or two (6.3%) lymphatic channels, each connecting areola with one or more SLN(s). Identification rate of SLN was 100% in both Groups. Accuracy of frozen section exam on SLN was 96.8% (1 case of micrometastasis was missed). SLN was positive in 13 (41.9%) of 31 patients, including 4 cases (30.7%) of micrometastasis. In 7 of 13 (53.8%) patients the SLN was the only site of axillary metastasis. SLNB accuracy was 96.8% (30 of 31), sensitivity 92.8 (13 of 14), and false-negative rate 7.1% (1 of 14). Since the case of skip metastasis was identified by the surgeon intraoperatively, it would have been no impact in the clinical practice. CONCLUSION: Our lymphoscintigraphic study shows that axillary SLN represents the whole breast regardless of tumor location within the parenchyma. The high accuracy of SLNB in MF and MC breast cancer demonstrates, according with the results of other series published in the literature, that both MF and MC tumors do not represent a contraindication for SLNB anymore
Can Survival Prediction Be Improved By Merging Gene Expression Data Sets?
BACKGROUND:High-throughput gene expression profiling technologies generating a wealth of data, are increasingly used for characterization of tumor biopsies for clinical trials. By applying machine learning algorithms to such clinically documented data sets, one hopes to improve tumor diagnosis, prognosis, as well as prediction of treatment response. However, the limited number of patients enrolled in a single trial study limits the power of machine learning approaches due to over-fitting. One could partially overcome this limitation by merging data from different studies. Nevertheless, such data sets differ from each other with regard to technical biases, patient selection criteria and follow-up treatment. It is therefore not clear at all whether the advantage of increased sample size outweighs the disadvantage of higher heterogeneity of merged data sets. Here, we present a systematic study to answer this question specifically for breast cancer data sets. We use survival prediction based on Cox regression as an assay to measure the added value of merged data sets. RESULTS:Using time-dependent Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) and hazard ratio as performance measures, we see in overall no significant improvement or deterioration of survival prediction with merged data sets as compared to individual data sets. This apparently was due to the fact that a few genes with strong prognostic power were not available on all microarray platforms and thus were not retained in the merged data sets. Surprisingly, we found that the overall best performance was achieved with a single-gene predictor consisting of CYB5D1. CONCLUSIONS:Merging did not deteriorate performance on average despite (a) The diversity of microarray platforms used. (b) The heterogeneity of patients cohorts. (c) The heterogeneity of breast cancer disease. (d) Substantial variation of time to death or relapse. (e) The reduced number of genes in the merged data sets. Predictors derived from the merged data sets were more robust, consistent and reproducible across microarray platforms. Moreover, merging data sets from different studies helps to better understand the biases of individual studies and can lead to the identification of strong survival factors like CYB5D1 expression
Regulation of pH During Amelogenesis
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation
Mutation D816V Alters the Internal Structure and Dynamics of c-KIT Receptor Cytoplasmic Region: Implications for Dimerization and Activation Mechanisms
The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites
Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic
Biomarker discovery and development for clinical research, diagnostics and therapy monitoring in clinical trials have advanced rapidly in key areas of medicine - most notably, oncology and cardiovascular diseases - allowing rapid early detection and supporting the evolution of biomarker-guided, precision-medicine-based targeted therapies. In Alzheimer disease (AD), breakthroughs in biomarker identification and validation include cerebrospinal fluid and PET markers of amyloid-β and tau proteins, which are highly accurate in detecting the presence of AD-associated pathophysiological and neuropathological changes. However, the high cost, insufficient accessibility and/or invasiveness of these assays limit their use as viable first-line tools for detecting patterns of pathophysiology. Therefore, a multistage, tiered approach is needed, prioritizing development of an initial screen to exclude from these tests the high numbers of people with cognitive deficits who do not demonstrate evidence of underlying AD pathophysiology. This Review summarizes the efforts of an international working group that aimed to survey the current landscape of blood-based AD biomarkers and outlines operational steps for an effective academic-industry co-development pathway from identification and assay development to validation for clinical use
Climate simulations for 1880-2003 with GISS modelE
We carry out climate simulations for 1880-2003 with GISS modelE driven by ten
measured or estimated climate forcings. An ensemble of climate model runs is
carried out for each forcing acting individually and for all forcing mechanisms
acting together. We compare side-by-side simulated climate change for each
forcing, all forcings, observations, unforced variability among model ensemble
members, and, if available, observed variability. Discrepancies between
observations and simulations with all forcings are due to model deficiencies,
inaccurate or incomplete forcings, and imperfect observations. Although there
are notable discrepancies between model and observations, the fidelity is
sufficient to encourage use of the model for simulations of future climate
change. By using a fixed well-documented model and accurately defining the
1880-2003 forcings, we aim to provide a benchmark against which the effect of
improvements in the model, climate forcings, and observations can be tested.
Principal model deficiencies include unrealistically weak tropical El Nino-like
variability and a poor distribution of sea ice, with too much sea ice in the
Northern Hemisphere and too little in the Southern Hemisphere. The greatest
uncertainties in the forcings are the temporal and spatial variations of
anthropogenic aerosols and their indirect effects on clouds.Comment: 44 pages; 19 figures; Final text accepted by Climate Dynamic
- …
