79 research outputs found
Views on and experiences of electronic cigarettes: a qualitative study of women who are pregnant or have recently given birth.
Background
Electronic cigarettes (ECs) are increasingly used for reducing or stopping smoking, with some studies showing positive outcomes. However, little is known about views on ECs during pregnancy or postpartum and previous studies have nearly all been conducted in the US and have methodological limitations, such as not distinguishing between smokers and ex/non-smokers. A greater understanding of this topic will help to inform both clinicians and EC interventions. We elicited views and experiences of ECs among UK pregnant or recently pregnant women.
Methods
We conducted semi-structured telephone interviews, using topic guides, with pregnant or recently pregnant women, who were current or recent ex-smokers. To ensure broad views of ECs were obtained, recruitment was from several geographical locations and via various avenues of recruitment. This included stop smoking services, antenatal and health visitor clinics, a pregnancy website and an informal network. Participants were 15 pregnant and 15 postpartum women, including nine current EC users, 11 ex-users, and 10 never-users. Five women who were interviewed in pregnancy were later interviewed in postpartum to explore if their views had changed. Audio data was transcribed verbatim and framework analysis was applied.
Results
Five main themes emerged: motivations for use (e.g., for stopping or reducing smoking), social stigma (e.g., avoiding use in public, preferring ‘discrete’ NRT), using the EC (e.g., mostly used at home); consumer aspects (e.g., limited advice available), and harm perceptions (e.g., viewed as less harmful than smoking; concerns about safety and addiction).
Conclusions
ECs were viewed positively by some pregnant and postpartum women and seen as less harmful than smoking and useful as aids for reducing and stopping smoking. However, due to perceived social stigma, some women feel uncomfortable using ECs in public, especially during pregnancy, and had concerns about safety and nicotine dependence. Health professionals and designers of EC interventions need to provide women with up-to-date and consistent information and advice about safety and dependence, as well as considering the influence of social stigma
A call for transparent reporting to optimize the predictive value of preclinical research
The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress
The effect of the oil resin on the properties of solution of the petroleum wax treated in an ultrasonic field
It was found that the complex treatment of ultrasonic followed by the addition of 0.3% by weight. petroleum resins, a more efficient method of inhibiting sedimentation processes than just ultrasonic or addition of 0,3% by weight. petroleum resins. According to the obtained data, fragments of aliphatic petroleum resins are adsorbed on the high molecular hydrocarbons of normal structure and prevent their aggregation thus the inhibition of sedimentation occurs
Some salt with your statin, professor?
We know that clinical trials sponsored by the pharmaceutical industry are likely to exaggerate benefit and minimise harms. But do these biases extend to their sponsorship of non-human animal research? Using systematic review and meta-analysis Bero and colleagues show that, in the case of statins, things are a little more complicated. While the conclusions of industry-sponsored studies were indeed more enthusiastic than warranted by their data, the data themselves painted a picture more conservative than was seen in non-industry-sponsored studies. This behaviour is consistent with maximising the return on investment, seeking robust data before embarking on a clinical trial, and, once that investment has been made, making every effort to “prove” that the drug is safe and effective if this is at all credible. The findings suggest that there is something different about industry-sponsored non-human animal research, perhaps reflecting higher standards than is the case elsewhere. Perhaps the academic community can learn something from our colleagues in the commercial sector
Characterization of a Drosophila Alzheimer's Disease Model: Pharmacological Rescue of Cognitive Defects
Transgenic models of Alzheimer's disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit aspects of clinical AD neuropathology and symptomology. These include the generation of Aβ40 and Aβ42, the presence of amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In addition, these flies exhibit external morphological abnormalities. Treatment with a γ-secretase inhibitor suppressed these phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic interventions
Improving our understanding of the in vivo modelling of psychotic disorders: a systematic review and meta-analysis
Psychotic disorders represent a severe category of mental disorders affecting about one
percent of the population. Individuals experience a loss or distortion of contact with reality
alongside other symptoms, many of which are still not adequately managed using existing
treatments. While animal models of these disorders could offer insights into these disorders
and potential new treatments, translation of this knowledge has so far been poor in terms of
informing clinical trials and practice. The aim of this project was to improve our
understanding of these pre-clinical studies and identify potential weaknesses underlying
translational failure.
I carried out a systematic search of the literature to provide an unbiased summary of
publications reporting animal models of schizophrenia and other psychotic disorders. From
these publications, data were extracted to quantify aspects of the field including reported
quality of studies, study characteristics and behavioural outcome data. The latter of these
data were then used to calculate estimates of efficacy using random-effects meta-analysis.
Having identified 3847 publications of relevance, including 852 different methods used to
induce the model, over 359 different outcomes tested in them and almost 946 different
treatments reported to be administered. I show that a large proportion of studies use simple
pharmacological interventions to induce their models of these disorders, despite the
availability of models using other interventions that are arguably of higher translational
relevance. I also show that the reported quality of these studies is low, and only 22% of
studies report taking measures to reduce the risk of biases such as randomisation and
blinding, which has been shown to affect the reliability of results drawn.
Through this work it becomes apparent that the literature is incredibly vast for studies looking
at animal models of psychotic disorders and that some of the relevant work potentially
overlaps with studies describing other conditions. This means that drawing reliable
conclusions from these data is affected by what is made available in the literature, how it is
reported and identified in a search and the time that it takes to reach these conclusions. I
introduce the idea of using computer-assisted tools to overcome one of these problems in
the long term.
Translation of results from studies looking at animals modelling uniquely-human psychotic
disorders to clinical successes might be improved by better reporting of studies including
publishing of all work carried out, labelling of studies more uniformly so that it is identifiable,
better reporting of study design including improving on reporting of measures taken to
reduce the risk of bias and focusing on models with greater validity to the human condition
Calcium Burden Assessment and Impact on Drug-Eluting Balloons in Peripheral Arterial Disease
n/
The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
Evaluation of Excess Significance Bias in Animal Studies of Neurological Diseases
Animal studies generate valuable hypotheses that lead to the conduct of preventive or therapeutic clinical trials. We assessed whether there is evidence for excess statistical significance in results of animal studies on neurological disorders, suggesting biases. We used data from meta-analyses of interventions deposited in Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies (CAMARADES). The number of observed studies with statistically significant results (O) was compared with the expected number (E), based on the statistical power of each study under different assumptions for the plausible effect size. We assessed 4,445 datasets synthesized in 160 meta-analyses on Alzheimer disease (n = 2), experimental autoimmune encephalomyelitis (n = 34), focal ischemia (n = 16), intracerebral hemorrhage (n = 61), Parkinson disease (n = 45), and spinal cord injury (n = 2). 112 meta-analyses (70%) found nominally (p≤0.05) statistically significant summary fixed effects. Assuming the effect size in the most precise study to be a plausible effect, 919 out of 4,445 nominally significant results were expected versus 1,719 observed (p<10-9). Excess significance was present across all neurological disorders, in all subgroups defined by methodological characteristics, and also according to alternative plausible effects. Asymmetry tests also showed evidence of small-study effects in 74 (46%) meta-analyses. Significantly effective interventions with more than 500 animals, and no hints of bias were seen in eight (5%) meta-analyses. Overall, there are too many animal studies with statistically significant results in the literature of neurological disorders. This observation suggests strong biases, with selective analysis and outcome reporting biases being plausible explanations, and provides novel evidence on how these biases might influence the whole research domain of neurological animal literature. © 2013 Tsilidis et al
- …
