172 research outputs found
Histological and Immunohistological Findings Using Anti-Cortisol Antibody in Atopic Dermatitis with Topical Steroid Addiction
Computing H/D-Exchange rates of single residues from data of proteolytic fragments
<p>Abstract</p> <p>Background</p> <p>Protein conformation and protein/protein interaction can be elucidated by solution-phase Hydrogen/Deuterium exchange (sHDX) coupled to high-resolution mass analysis of the digested protein or protein complex. In sHDX experiments mutant proteins are compared to wild-type proteins or a ligand is added to the protein and compared to the wild-type protein (or mutant). The number of deuteriums incorporated into the polypeptides generated from the protease digest of the protein is related to the solvent accessibility of amide protons within the original protein construct.</p> <p>Results</p> <p>In this work, sHDX data was collected on a 14.5 T FT-ICR MS. An algorithm was developed based on combinatorial optimization that predicts deuterium exchange with high spatial resolution based on the sHDX data of overlapping proteolytic fragments. Often the algorithm assigns deuterium exchange with single residue resolution.</p> <p>Conclusions</p> <p>With our new method it is possible to automatically determine deuterium exchange with higher spatial resolution than the level of digested fragments.</p
A Dynamic Stochastic Model for DNA Replication Initiation in Early Embryos
Background: Eukaryotic cells seem unable to monitor replication completion during normal S phase, yet must ensure a reliable replication completion time. This is an acute problem in early Xenopus embryos since DNA replication origins are located and activated stochastically, leading to the random completion problem. DNA combing, kinetic modelling and other studies using Xenopus egg extracts have suggested that potential origins are much more abundant than actual initiation events and that the time-dependent rate of initiation, I(t), markedly increases through S phase to ensure the rapid completion of unreplicated gaps and a narrow distribution of completion times. However, the molecular mechanism that underlies this increase has remained obscure.Methodology/Principal Findings: Using both previous and novel DNA combing data we have confirmed that I(t) increases through S phase but have also established that it progressively decreases before the end of S phase. To explore plausible biochemical scenarios that might explain these features, we have performed comparisons between numerical simulations and DNA combing data. Several simple models were tested: i) recycling of a limiting replication fork component from completed replicons; ii) time-dependent increase in origin efficiency; iii) time-dependent increase in availability of an initially limiting factor, e. g. by nuclear import. None of these potential mechanisms could on its own account for the data. We propose a model that combines time-dependent changes in availability of a replication factor and a fork-density dependent affinity of this factor for potential origins. This novel model quantitatively and robustly accounted for the observed changes in initiation rate and fork density.Conclusions/Significance: This work provides a refined temporal profile of replication initiation rates and a robust, dynamic model that quantitatively explains replication origin usage during early embryonic S phase. These results have significant implications for the organisation of replication origins in higher eukaryotes
Sex Differential Genetic Effect of Chromosome 9p21 on Subclinical Atherosclerosis
BACKGROUND: Chromosome 9p21 has recently been shown to be a risk region for a broad range of vascular diseases. Since carotid intima-media thickness (IMT) and plaque are independent predictors for vascular diseases, the association between 9p21 and these two phenotypes was investigated. METHODOLOGY/PRINCIPAL FINDINGS: Carotid segment-specific IMT and plaques were obtained in 1083 stroke- and myocardial infarction-free volunteers. We tested the genotypes and haplotypes of key single nucleotide polymorphisms (SNPs) on chromosome 9p21 for the associations with carotid IMT and plaque. Multivariate permutation analyses demonstrated that carriers of the T allele of SNP rs1333040 were significantly associated with thicker common carotid artery (CCA) IMT (p=0.021) and internal carotid artery (ICA) IMT (p=0.033). The risk G allele of SNP rs2383207 was associated with ICA IMT (p=0.007). Carriers of the C allele of SNP rs1333049 were found to be significantly associated with thicker ICA IMT (p=0.010) and the greater risk for the presence of carotid plaque (OR=1.57 for heterozygous carriers; OR=1.75 for homozygous carriers). Haplotype analysis showed a global p value of 0.031 for ICA IMT and 0.115 for the presence of carotid plaque. Comparing with the other haplotypes, the risk TGC haplotype yielded an adjusted p value of 0.011 and 0.017 for thicker ICA IMT and the presence of carotid plaque respectively. Further analyzing the data separated by sex, the results were significant only in men but not in women. CONCLUSIONS: Chromosome 9p21 had a significant association with carotid atherosclerosis, especially ICA IMT. Furthermore, such genetic effect was in a gender-specific manner in the Han Chinese population
11β-Hydroxysteroid Dehydrogenase-1 Is a Novel Regulator of Skin Homeostasis and a Candidate Target for Promoting Tissue Repair
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the interconversion of cortisone and cortisol within the endoplasmic reticulum. 11β-HSD1 is expressed widely, most notably in the liver, adipose tissue, and central nervous system. It has been studied intensely over the last 10 years because its activity is reported to be increased in visceral adipose tissue of obese people. Epidermal keratinocytes and dermal fibroblasts also express 11β-HSD1. However, the function of the enzymatic activity 11β-HSD1 in skin is not known. We found that 11β-HSD1 was expressed in human and murine epidermis, and this expression increased as keratinocytes differentiate. The expression of 11β-HSD1 by normal human epidermal keratinocytes (NHEKs) was increased by starvation or calcium-induced differentiation in vitro. A selective inhibitor of 11β-HSD1 promoted proliferation of NHEKs and normal human dermal fibroblasts, but did not alter the differentiation of NHEKs. Topical application of selective 11β-HSD1 inhibitor to the dorsal skin of hairless mice caused proliferation of keratinocytes. Taken together, these data suggest that 11β-HSD1 is involved in tissue remodeling of the skin. This hypothesis was further supported by the observation that topical application of the selective 11β-HSD1 inhibitor enhanced cutaneous wound healing in C57BL/6 mice and ob/ob mice. Collectively, we conclude that 11β-HSD1 is negatively regulating the proliferation of keratinocytes and fibroblasts, and cutaneous wound healing. Hence, 11β-HSD1 might maintain skin homeostasis by regulating the proliferation of keratinocytes and dermal fibroblasts. Thus 11β-HSD1 is a novel candidate target for the design of skin disease treatments
CD133-positive hepatocellular carcinoma in an area endemic for hepatitis B virus infection
<p>Abstract</p> <p>Background</p> <p>CD133 was detected in several types of cancers including hepatocellular carcinoma (HCC), which raised the possibility of stem cell origin in a subset of cancers. However, reappearance of embryonic markers in de-differentiated malignant cells was commonly observed. It remained to be elucidated whether CD133-positive HCCs were indeed of stem cell origin or they were just a group of poorly differentiated cells acquiring an embryonic marker. The aim of this study was to investigate the significance of CD133 expression in HCC in an area endemic for hepatitis B virus (HBV) infection to gain insights on this issue.</p> <p>Methods</p> <p>154 HCC patients receiving total removal of HCCs were included. 104 of them (67.5%) were positive for HBV infection. The cancerous and adjacent non-cancerous liver tissues were subjected for Western blot and immunohistochemistry analysis for CD133 expression. The data were correlated with clinical parameters, patient survivals, and p53 expression.</p> <p>Results</p> <p>Of 154 patients, 24 (15.6%) had CD133 expression in HCC. Univariate and multivariate logistic regression analysis revealed that CD133 expression was negatively correlated with the presence of hepatitis B surface antigen (HBsAg). The unadjusted and adjusted odds ratios were 0.337 (95%CI 0.126 - 0.890) and 0.084 (95%CI 0.010 - 0.707), respectively. On the other hand, p53 expression was positively associated with the presence of HBsAg in univariate analysis. The unadjusted odds ratio was 4.203 (95%CI 1.110 - 18.673). Survival analysis indicated that both CD133 and p53 expression in HCC predicted poor disease-free survival (P = 0.009 and 0.001, respectively), whereas only CD133 expression predicted poor overall survival (P = 0.001). Cox proportional hazard model showed that p53 and CD133 expression were two independent predictors for disease-free survival. The hazard ratios were 1.697 (95% CI 1.318 - 2.185) and 2.559 (95% CI 1.519 - 4.313), respectively (P < 0.001 for both).</p> <p>Conclusion</p> <p>In area where HBV infection accounts for the major attributive risk of HCC, CD133 expression in HCC was negatively associated with the presence of HBsAg, implicating a non-viral origin of CD133-positive HCC. Additionally, CD133 expression predicted poor disease-free survival independently of p53 expression, arguing for two distinguishable hepatocarcinogenesis pathways.</p
Identification of Genes with Allelic Imbalance on 6p Associated with Nasopharyngeal Carcinoma in Southern Chinese
Nasopharyngeal carcinoma (NPC) is a malignancy of epithelial origin. The etiology of NPC is complex and includes multiple genetic and environmental factors. We employed case-control analysis to study the association of chromosome 6p regions with NPC. In total, 360 subjects and 360 healthy controls were included, and 233 single nucleotide polymorphisms (SNPs) on 6p were examined. Significant single-marker associations were found for SNPs rs2267633 (p = 4.49×10−5), rs2076483 (most significant, p = 3.36×10−5), and rs29230 (p = 1.43×10−4). The highly associated genes were the gamma-amino butyric acid B receptor 1 (GABBR1), human leukocyte antigen (HLA-A), and HLA complex group 9 (HCG9). Haplotypic associations were found for haplotypes AAA (located within GABBR1, p-value = 6.46×10−5) and TT (located within HLA-A, p = 0.0014). Further investigation of the homozygous genotype frequencies between cases and controls suggested that micro-deletion regions occur in GABBR1 and neural precursor cell expressed developmentally down-regulated 9 (NEDD9). Quantitative real-time polymerase chain reaction (qPCR) using 11 pairs of NPC biopsy samples confirmed the significant decline in GABBR1 and NEDD9 mRNA expression in the cancer tissues compared to the adjacent non-tumor tissue (p<0.05). Our study demonstrates that multiple chromosome 6p susceptibility loci contribute to the risk of NPC, possibly though GABBR1 and NEDD9 loss of function
The Risk of Stroke after Percutaneous Vertebroplasty for Osteoporosis: A Population-Based Cohort Study
PURPOSE: To investigate the incidence and risk of stroke after percutaneous vertebroplasty in patients with osteoporosis. METHODS: A group of 334 patients with osteoporosis, and who underwent percutaneous vertebroplasty during the study period, was compared to 1,655 age-, sex- and propensity score-matched patients who did not undergo vertebroplasty. All demographic covariates and co-morbidities were deliberately matched between the two groups to avoid selection bias. Every subject was followed-up for up to five years for stroke. Adjustments using a Cox regression model and Kaplan-Meier analyses were conducted. RESULTS: A total of 1,989 osteoporotic patients were followed up for 3,760.13 person-years. Overall, the incidence rates of any stroke, hemorrhagic stroke and ischemic stroke were 22.6, 4.2 and 19.6 per 1,000 person-years, respectively. Patients who underwent vertebroplasty were not more likely to have any stroke (crude hazard ratio = 1.13, p = 0.693), hemorrhagic stroke (HR = 2.21, p = 0.170), or ischemic stroke (HR = 0.96, p = 0.90). After adjusting for demographics, co-morbidities and medications, the vertebroplasty group had no significant difference with the comparison group in terms of any, hemorrhagic and ischemic strokes (adjusted HR = 1.22, 3.17, and 0.96, p = 0.518, 0.055, and 0.91, respectively). CONCLUSIONS: Osteoporotic patients who undergo percutaneous vertebroplasty are not at higher risk of any stroke in the next five years after the procedure
The desmosome and pemphigus
Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required
- …
