189 research outputs found
The political process of constructing a sustainable London Olympics sports development legacy
This study attempts to develop a research agenda for understanding the process of constructing a sustainable Olympic sports development legacy. The research uses a social constructivist perspective to examine the link between the 2012 London Olympic Games and sustainable sports development. The first part of the paper provides justification for the study of sport policy processes using a constructivist lens. This is followed by a section which critically unpacks sustainable sports development drawing on Mosse’s (1998) ideas of process-oriented research and Searle’s conceptualisation of the construction of social reality. Searle’s (1995) concepts of the assignment of function, collective intentionality, collective rules, and human capacity to cope with the environment are considered in relation to the events and discourses emerging from the legacy vision(s) associated with the 2012 London Olympic Games. The paper concludes by proposing a framework for engaging in process oriented research and highlights key elements, research questions, and methodological issues. The proposed constructivist approach can be used to inform policy, practice, and research on sustainable Olympic sports development legacy
Prevalence of Giardia intestinalis and Hymenolepis nana in Afghan refugee population of Mianwali district, Pakistan.
Background: Present study aimed to investigate prevalence of Giardia intestinalis and Hymenolepis nana in Afghan refugees visiting Central Health Unit (CHU), Kot Chandana (Mianwali, Northern Punjab) during two years period (February 2007 to December 2009).Methods: A total of 687 stool samples were collected from different age groups of both genders. Samples were processed under sterile conditions after gross examination. Microscopic examination was done on same day along with eggs (H. nana), cyst and trophozoites (G. intestinalis) detection after staining.Results: The prevalence of G. intestinalis was significantly higher (x2=59.54, p<0.001) than that of H. nana. Females were found more likely to be infected as compared to males (OR: 1.40, 95% CI=1.03-1.92). Prevalence of both parasites decreased with age and highest prevalence was observed in young individuals belonging to 1-15 years of age group (41.8% and 48.7% respectively for H. nana and G. intestinalis, p<0.001). Abdominal distress (OR: 1.13, 95%CI=0.83-1.53), vomiting (OR: 1.13, 95%CI=1.13-1.81) and rectal prolapse (OR: 4.26, 95%CI=1.38-13.16) were the gastro-intestinal clinical symptoms observed in G. intestinalis. Whereas, bloody diarrhea (OR: 1.56, 95%CI=1.00-2.43) and rectal prolapse (OR: 5.79, 95%CI=1.87-17.91) were associated with H. nana infections.Conclusions: Intestinal parasitic infections are common among Afghan refugees and serious preventive measures should be implemented to promote the safety and healthy lifestyle of these people.Keywords: Giardia intestinalis, Hymenolepis nana, Prevalence, Afghan Refugees, Punjab
Two-dimensional NMR lineshape analysis
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions
Evolving uses of oral reverse transcriptase inhibitors in the HIV-1 epidemic: From treatment to prevention
The HIV epidemic continues unabated, with no highly effective vaccine and no cure. Each new infection has significant economic, social and human costs and prevention efforts are now as great a priority as global antiretroviral therapy (ART) scale up. Reverse transcriptase inhibitors, the first licensed class of ART, have been at the forefront of treatment and prevention of mother to child transmission over the past two decades. Now, their use in adult prevention is being
Understanding nanomechanical and surface ellipsometry of optical F-doped SnO2 thin films by in-line APCVD
In this paper, a production-type chemical vapour deposition (CVD) is utilized to deposit fluorine
doped tin oxide thin films of different thicknesses and dopant levels. Deposited films showed a
preferred orientation along the (200) plane of a tetragonal structure due to the formation of
halogen rich polar molecules during the process. A holistic approach studying elastic modulus
and hardness of resulting films by a high-throughput atmospheric-pressure CVD process is
described. The hardness values determined lie between 8 - 20 GPa. For a given load, the modulus
generally increased slightly with the thickness. The average elastic recovery for the coatings was
found to be between 45 – 50 %. Refractive index and thickness values derived from the fitted
ellipsometry data were in excellent agreement with independent calculations from transmission
and reflection data
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
Mapping environmental sustainability of knitted textile production facilities
To achieve the Sustainable Development Goal (SDG) 12, it is important to investigate the sustainability of both products and manufacturing facilities to identify the areas to improve. The number of published research works on measuring the eco-indices of fashion products are plenty, while ignoring the measurement of the eco-indices of fashion production facilities. Therefore, this study investigated the environmental sustainability of knit-dyeing facilities linked to fast fashion production in Bangladesh. The Facility Environment Module (FEM) of the Higg index tool 2.0 from Sustainable Apparel Coalition (SAC) was applied to detect the sustainability scores. Multiple case study approach was adopted for this study. Seven tools of FEM related to the environmental management system, energy use, GHG emissions, water use, wastewater, air emissions, waste management, and chemical management were applied to collect data. Scores of these categories were calculated using the FEM tool. Qualitative data was collected through short interviews using a questionnaire. A varying range of scores (from low to high) was found for all the categories. The scores reveal the technical, managerial, and resource limitations on practicing sustainable production approaches in knit-textiles facilities. The overall finding urges all stakeholders, including manufacturers, researchers, buyers, and policymakers, to pay serious attention and reformulate strategies and resources to reduce the negative impact of knit manufacturing on the environment
Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases
Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
In silico modeling of the specific inhibitory potential of thiophene-2,3-dihydro-1,5-benzothiazepine against BChE in the formation of β-amyloid plaques associated with Alzheimer's disease
<p>Abstract</p> <p>Background</p> <p>Alzheimer's disease, known to be associated with the gradual loss of memory, is characterized by low concentration of acetylcholine in the hippocampus and cortex part of the brain. Inhibition of acetylcholinesterase has successfully been used as a drug target to treat Alzheimer's disease but drug resistance shown by butyrylcholinesterase remains a matter of concern in treating Alzheimer's disease. Apart from the many other reasons for Alzheimer's disease, its association with the genesis of fibrils by β-amyloid plaques is closely related to the increased activity of butyrylcholinesterase. Although few data are available on the inhibition of butyrylcholinesterase, studies have shown that that butyrylcholinesterase is a genetically validated drug target and its selective inhibition reduces the formation of β-amyloid plaques.</p> <p>Rationale</p> <p>We previously reported the inhibition of cholinesterases by 2,3-dihydro-1, 5-benzothiazepines, and considered this class of compounds as promising inhibitors for the cure of Alzheimer's disease. One compound from the same series, when substituted with a hydroxy group at C-3 in ring A and 2-thienyl moiety as ring B, showed greater activity against butyrylcholinesterase than to acetylcholinesterase. To provide insight into the binding mode of this compound (Compound A), molecular docking in combination with molecular dynamics simulation of 5000 ps in an explicit solvent system was carried out for both cholinesterases.</p> <p>Conclusion</p> <p>Molecular docking studies revealed that the potential of Compound A to inhibit cholinesterases was attributable to the cumulative effects of strong hydrogen bonds, cationic-π, π-π interactions and hydrophobic interactions. A comparison of the docking results of Compound A against both cholinesterases showed that amino acid residues in different sub-sites were engaged to stabilize the docked complex. The relatively high affinity of Compound A for butyrylcholinesterase was due to the additional hydrophobic interaction between the 2-thiophene moiety of Compound A and Ile69. The involvement of one catalytic triad residue (His438) of butyrylcholinesterase with the 3'-hydroxy group on ring A increases the selectivity of Compound A. C-C bond rotation around ring A also stabilizes and enhances the interaction of Compound A with butyrylcholinesterase. Furthermore, the classical network of hydrogen bonding interactions as formed by the catalytic triad of butyrylcholinesterase is disturbed by Compound A. This study may open a new avenue for structure-based drug design for Alzheimer's disease by considering the 3D-pharmacophoric features of the complex responsible for discriminating these two closely-related cholinesterases.</p
Metabolomic Profiling of Drug Responses in Acute Myeloid Leukaemia Cell Lines
Combined bezafibrate (BEZ) and medroxyprogesterone acetate (MPA) exert unexpected antileukaemic activities against acute myeloid leukaemia (AML) and these activities are associated with the generation of reactive oxygen species (ROS) within the tumor cells. Although the generation of ROS by these drugs is supported by preceding studies including our own, the interrelationship between the cellular effects of the drugs and ROS generation is not well understood. Here we report the use of NMR metabolomic profiling to further study the effect of BEZ and MPA on three AML cell lines and to shed light on the underlying mechanism of action. For this we focused on drug effects induced during the initial 24 hours of treatment prior to the onset of overt cellular responses and examined these in the context of basal differences in metabolic profiles between the cell lines. Despite their ultimately profound cellular effects, the early changes in metabolic profiles engendered by these drugs were less pronounced than the constitutive metabolic differences between cell types. Nonetheless, drug treatments engendered common metabolic changes, most markedly in the response to the combination of BEZ and MPA. These responses included changes to TCA cycle intermediates consistent with recently identified chemical actions of ROS. Notable amongst these was the conversion of α-ketoglutarate to succinate which was recapitulated by the treatment of cell extracts with exogenous hydrogen peroxide. These findings indicate that the actions of combined BEZ and MPA against AML cells are indeed mediated downstream of the generation of ROS rather than some hitherto unsuspected mechanism. Moreover, our findings demonstrate that metabolite profiles represent highly sensitive markers for genomic differences between cells and their responses to external stimuli. This opens new perspectives to use metabolic profiling as a tool to study the rational redeployment of drugs in new disease settings
- …
