427 research outputs found
Quantum-Theory of Optical Feedback Via Homodyne Detection
We present a quantum theory of feedback in which the homodyne photocurrent alters the dynamics of the source cavity. To the nonlinear stochastic (Ito) evolution of the conditioned system state we add a feedback term linear in the instantaneous stochastic (Stratonovich) photocurrent. Averaging over the photocurrent gives a feedback master equation which has the desired driftlike term, plus a diffusionlike term. We apply the model to phase locking a regularly pumped laser, and show that under ideal conditions the noise spectra of the output light exhibit perfect squeezing on resonance
Entanglement-free Heisenberg-limited phase estimation
Measurement underpins all quantitative science. A key example is the
measurement of optical phase, used in length metrology and many other
applications. Advances in precision measurement have consistently led to
important scientific discoveries. At the fundamental level, measurement
precision is limited by the number N of quantum resources (such as photons)
that are used. Standard measurement schemes, using each resource independently,
lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard
quantum limit. However, it has long been conjectured that it should be possible
to achieve a precision limited only by the Heisenberg uncertainty principle,
dramatically improving the scaling to 1/N. It is commonly thought that
achieving this improvement requires the use of exotic quantum entangled states,
such as the NOON state. These states are extremely difficult to generate.
Measurement schemes with counted photons or ions have been performed with N <=
6, but few have surpassed the standard quantum limit and none have shown
Heisenberg-limited scaling. Here we demonstrate experimentally a
Heisenberg-limited phase estimation procedure. We replace entangled input
states with multiple applications of the phase shift on unentangled
single-photon states. We generalize Kitaev's phase estimation algorithm using
adaptive measurement theory to achieve a standard deviation scaling at the
Heisenberg limit. For the largest number of resources used (N = 378), we
estimate an unknown phase with a variance more than 10 dB below the standard
quantum limit; achieving this variance would require more than 4,000 resources
using standard interferometry. Our results represent a drastic reduction in the
complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio
Causarum Investigatio and the Two Bell's Theorems of John Bell
"Bell's theorem" can refer to two different theorems that John Bell proved,
the first in 1964 and the second in 1976. His 1964 theorem is the
incompatibility of quantum phenomena with the joint assumptions of Locality and
Predetermination. His 1976 theorem is their incompatibility with the single
property of Local Causality. This is contrary to Bell's own later assertions,
that his 1964 theorem began with the assumption of Local Causality, even if not
by that name. Although the two Bell's theorems are logically equivalent, their
assumptions are not. Hence, the earlier and later theorems suggest quite
different conclusions, embraced by operationalists and realists, respectively.
The key issue is whether Locality or Local Causality is the appropriate notion
emanating from Relativistic Causality, and this rests on one's basic notion of
causation. For operationalists the appropriate notion is what is here called
the Principle of Agent-Causation, while for realists it is Reichenbach's
Principle of common cause. By breaking down the latter into even more basic
Postulates, it is possible to obtain a version of Bell's theorem in which each
camp could reject one assumption, happy that the remaining assumptions reflect
its weltanschauung. Formulating Bell's theorem in terms of causation is
fruitful not just for attempting to reconcile the two camps, but also for
better describing the ontology of different quantum interpretations and for
more deeply understanding the implications of Bell's marvellous work.Comment: 24 pages. Prepared for proceedings of the "Quantum [Un]speakables II"
conference (Vienna, 2014), to be published by Springe
Quantum feedback control of a superconducting qubit: Persistent Rabi oscillations
The act of measurement bridges the quantum and classical worlds by projecting
a superposition of possible states into a single, albeit probabilistic,
outcome. The time-scale of this "instantaneous" process can be stretched using
weak measurements so that it takes the form of a gradual random walk towards a
final state. Remarkably, the interim measurement record is sufficient to
continuously track and steer the quantum state using feedback. We monitor the
dynamics of a resonantly driven quantum two-level system -- a superconducting
quantum bit --using a near-noiseless parametric amplifier. The high-fidelity
measurement output is used to actively stabilize the phase of Rabi
oscillations, enabling them to persist indefinitely. This new functionality
shows promise for fighting decoherence and defines a path for continuous
quantum error correction.Comment: Manuscript: 5 Pages and 3 figures ; Supplementary Information: 9
pages and 3 figure
Conclusive quantum steering with superconducting transition edge sensors
Quantum steering allows two parties to verify shared entanglement even if one
measurement device is untrusted. A conclusive demonstration of steering through
the violation of a steering inequality is of considerable fundamental interest
and opens up applications in quantum communication. To date all experimental
tests with single photon states have relied on post-selection, allowing
untrusted devices to cheat by hiding unfavourable events in losses. Here we
close this "detection loophole" by combining a highly efficient source of
entangled photon pairs with superconducting transition edge sensors. We achieve
an unprecedented ~62% conditional detection efficiency of entangled photons and
violate a steering inequality with the minimal number of measurement settings
by 48 standard deviations. Our results provide a clear path to practical
applications of steering and to a photonic loophole-free Bell test.Comment: Preprint of 7 pages, 3 figures; the definitive version is published
in Nature Communications, see below. Also, see related experimental work by
A. J. Bennet et al., arXiv:1111.0739 and B. Wittmann et al., arXiv:1111.076
All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering
Einstein-Podolsky-Rosen steering is a form of quantum nonlocality
intermediate between entanglement and Bell nonlocality. Although Schr\"odinger
already mooted the idea in 1935, steering still defies a complete
understanding. In analogy to "all-versus-nothing" proofs of Bell nonlocality,
here we present a proof of steering without inequalities rendering the
detection of correlations leading to a violation of steering inequalities
unnecessary. We show that, given any two-qubit entangled state, the existence
of certain projective measurement by Alice so that Bob's normalized conditional
states can be regarded as two different pure states provides a criterion for
Alice-to-Bob steerability. A steering inequality equivalent to the
all-versus-nothing proof is also obtained. Our result clearly demonstrates that
there exist many quantum states which do not violate any previously known
steering inequality but are indeed steerable. Our method offers advantages over
the existing methods for experimentally testing steerability, and sheds new
light on the asymmetric steering problem.Comment: 7 pages, 2 figures. Accepted in Sci. Re
Testing foundations of quantum mechanics with photons
The foundational ideas of quantum mechanics continue to give rise to
counterintuitive theories and physical effects that are in conflict with a
classical description of Nature. Experiments with light at the single photon
level have historically been at the forefront of tests of fundamental quantum
theory and new developments in photonics engineering continue to enable new
experiments. Here we review recent photonic experiments to test two
foundational themes in quantum mechanics: wave-particle duality, central to
recent complementarity and delayed-choice experiments; and Bell nonlocality
where recent theoretical and technological advances have allowed all
controversial loopholes to be separately addressed in different photonics
experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review
articl
Measurement-based quantum control of mechanical motion
Controlling a quantum system based on the observation of its dynamics is
inevitably complicated by the backaction of the measurement process. Efficient
measurements, however, maximize the amount of information gained per
disturbance incurred. Real-time feedback then enables both canceling the
measurement's backaction and controlling the evolution of the quantum state.
While such measurement-based quantum control has been demonstrated in the clean
settings of cavity and circuit quantum electrodynamics, its application to
motional degrees of freedom has remained elusive. Here we show
measurement-based quantum control of the motion of a millimetre-sized membrane
resonator. An optomechanical transducer resolves the zero-point motion of the
soft-clamped resonator in a fraction of its millisecond coherence time, with an
overall measurement efficiency close to unity. We use this position record to
feedback-cool a resonator mode to its quantum ground state (residual thermal
occupation n = 0.29 +- 0.03), 9 dB below the quantum backaction limit of
sideband cooling, and six orders of magnitude below the equilibrium occupation
of its thermal environment. This realizes a long-standing goal in the field,
and adds position and momentum to the degrees of freedom amenable to
measurement-based quantum control, with potential applications in quantum
information processing and gravitational wave detectors.Comment: New version with corrected detection efficiency as determined with a
NIST-calibrated photodiode, added references and revised structure. Main
conclusions are identical. 41 pages, 18 figure
Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control
Optical phase estimation is a vital measurement primitive that is used to
perform accurate measurements of various physical quantities like length,
velocity and displacements. The precision of such measurements can be largely
enhanced by the use of entangled or squeezed states of light as demonstrated in
a variety of different optical systems. Most of these accounts however deal
with the measurement of a very small shift of an already known phase, which is
in stark contrast to ab-initio phase estimation where the initial phase is
unknown. Here we report on the realization of a quantum enhanced and fully
deterministic phase estimation protocol based on real-time feedback control.
Using robust squeezed states of light combined with a real-time Bayesian
estimation feedback algorithm, we demonstrate deterministic phase estimation
with a precision beyond the quantum shot noise limit. The demonstrated protocol
opens up new opportunities for quantum microscopy, quantum metrology and
quantum information processing.Comment: 5 figure
Bayesian quantum noise spectroscopy
© 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft. As commonly understood, the noise spectroscopy problem - characterizing the statistical properties of a noise process affecting a quantum system by measuring its response - is mathematically ill-posed, in the sense that no unique noise process leads to a set of responses unless extra assumptions are taken into account. Ad-hoc solutions assume an implicit structure, which is often never determined. Thus, it is unclear when the method will succeed or whether one should trust the solution obtained. Here, we propose to treat the problem from the point of view of statistical estimation theory. We develop a Bayesian solution to the problem which allows one to easily incorporate assumptions which render the problem solvable. We compare several numerical techniques for noise spectroscopy and find the Bayesian approach to be superior in many respects
- …
