1,788 research outputs found
Appetite suppressants and valvular heart disease - a systematic review
Background Although appetite suppressants have been implicated in the development of valvular heart disease, the exact level of risk is still uncertain. Initial studies suggested that as many as 1 in 3 exposed patients were affected, but subsequent research has yielded substantially different figures. Our objective was to systematically assess the risk of valvular heart disease with appetite suppressants. Methods We accepted studies involving obese patients treated with any of the following appetite suppressants: fenfluramine, dexfenfluramine, and phentermine. Three types of studies were reviewed: controlled and uncontrolled observational studies, and randomized controlled trials. Outcomes of interest were echocardiographically detectable aortic regurgitation of mild or greater severity, or mitral regurgitation of moderate or greater severity. Results Of the 1279 patients evaluated in seven uncontrolled cohort studies, 236 (18%) and 60 (5%) were found to have aortic and mitral regurgitation, respectively. Pooled data from six controlled cohort studies yielded, for aortic regurgitation, a relative risk ratio of 2.32 (95% confidence intervals 1.79 to 3.01, p < 0.00001) and an attributable rate of 4.9%, and for mitral regurgitation, a relative risk ratio of 1.55 (95% confidence intervals 1.06 to 2.25, p = 0.02) with an attributable rate of 1.0%. Only one case of valvular heart disease was detected in 57 randomized controlled trials, but this was judged unrelated to drug therapy. Conclusions The risk of valvular heart disease is significantly increased by the appetite suppressants reviewed here. Nevertheless, when considering all the evidence, valvulopathy is much less common than suggested by the initial, less methodologically rigorous studies
Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst
Thin and flexible composite films of raw or purified multiwalled carbon nanotube (MWCNT) with various mass fractions and poly(methylmethacrylate) (PMMA) were synthesized for electromagnetic interference (EMI) shielding material. From scanning electron microscopy and high-resolution transmission electron microscopy photographs, we observed the formation of a conducting network through MWCNTs in an insulating PMMA matrix and the existence of an Fe catalyst in MWCNTs. The dc conductivity (sigma(dc)) of the systems increased with increasing MWCNT mass fraction, showing typical percolation behavior. The measured EMI shielding efficiency (SE) of MWCNT-PMMA composites by using the extended ASTM D4935-99 method (50 MHz-13.5 GHz) increased with increasing MWCNT mass fraction as sigma(dc). The highest EMI SE for raw MWCNT-PMMA composites was similar to27 dB, indicating commercial use for far-field EMI shielding. The contribution of absorption to total EMI SE of the systems is larger than that of reflection. Based on magnetic permeability, we suggest raw MWCNTs and their composites can be used for near-field EMI shielding.open28629
An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus
The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility
Malignancy risk analysis in patients with inadequate fine needle aspiration cytology (FNAC) of the thyroid
Background
Thyroid fine needle aspiration cytology (FNAC) is the standard diagnostic modality for thyroid nodules. However, it has limitations among which is the incidence of non-diagnostic results (Thy1). Management of cases with repeatedly non-diagnostic FNAC ranges from simple observation to surgical intervention. We aim to evaluate the incidence of malignancy in non-diagnostic FNAC, and the success rate of repeated FNAC. We also aim to evaluate risk factors for malignancy in patients with non-diagnostic FNAC.
Materials and Methods
Retrospective analyses of consecutive cases with thyroid non diagnostic FNAC results were included.
Results
Out of total 1657 thyroid FNAC done during the study period, there were 264 (15.9%) non-diagnostic FNAC on the first attempt. On repeating those, the rate of a non-diagnostic result on second FNAC was 61.8% and on third FNAC was 47.2%. The overall malignancy rate in Thy1 FNAC was 4.5% (42% papillary, 42% follicular and 8% anaplastic), and the yield of malignancy decreased considerably with successive non-diagnostic FNAC. Ultrasound guidance by an experienced head neck radiologist produced the lowest non-diagnostic rate (38%) on repetition compared to US guidance by a generalist radiologist (65%) and by non US guidance (90%).
Conclusions
There is a low risk of malignancy in patients with a non-diagnostic FNAC result, commensurate to the risk of any nodule. The yield of malignancy decreased considerably with successive non-diagnostic FNAC
Novel mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA
The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes
The Formation of the First Massive Black Holes
Supermassive black holes (SMBHs) are common in local galactic nuclei, and
SMBHs as massive as several billion solar masses already exist at redshift z=6.
These earliest SMBHs may grow by the combination of radiation-pressure-limited
accretion and mergers of stellar-mass seed BHs, left behind by the first
generation of metal-free stars, or may be formed by more rapid direct collapse
of gas in rare special environments where dense gas can accumulate without
first fragmenting into stars. This chapter offers a review of these two
competing scenarios, as well as some more exotic alternative ideas. It also
briefly discusses how the different models may be distinguished in the future
by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First
Galaxies - Theoretical Predictions and Observational Clues", Springer
Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B.
Mobasher, in pres
Lipid-Core Plaque Assessed by Near-Infrared Spectroscopy and Procedure Related Microvascular Injury
BACKGROUND AND OBJECTIVES: Microvascular damage due to distal embolization during percutaneous coronary intervention (PCI) is an important cause of periprocedural myocardial infarction. We assessed the lipid-core plaque using near-infrared spectroscopy (NIRS) and microvascular dysfunction invasively with the index of microcirculatory resistance (IMR) and evaluated their relationship.
METHODS: This study is pilot retrospective observational study. We analyzed 39 patients who performed NIRS before and after PCI, while fractional flow reserve, thermo-dilution coronary flow reserve (CFR) and IMR were measured after PCI. The maximum value of lipid core burden index (LCBI) for any of the 4-mm segments at the culprit lesion (culprit LCBI4mm) was calculated at the culprit lesion. We divided the patients into 2 groups using a cutoff of culprit LCBI4mm >/=500.
RESULTS: Mean pre-PCI LCBI was 333+/-196 and mean post-PCI IMR was 20+/-14 U. Post-PCI IMR was higher (15.6+/-7.3 vs. 42.6+/-17.6 U, p/=25 U) was higher in the high LCBI group (9.4% vs. 85.7%, p<0.001). However, there were no significant differences in the incidences of creatine Kinase-MB (9.4% vs. 14.3%, p=0.563) and troponin-I elevation (12.5% vs. 14.3%, p=1.000).
CONCLUSIONS: A large lipid-core plaque at the 'culprit' lesion is observed higher incidence of post-PCI microvascular dysfunction after PCI. Prospective study with adequate subject numbers will be needed
Stent dislodgement force of drug-eluting coronary stents: a bench test
BACKGROUND: Coronary stent dislodgement can cause critical complications. The dislodgement force of coronary drug-eluting stents (DES) remains unknown. This study aimed to compare the dislodgement force and pattern of contemporary DES. METHODS: Five DES designs which commonly used in clinical practice were tested. The force at which the stent dislodges relative to the balloon was measured. For the shim test, peak displacement force, defined as the first peak force that occurs during stent displacement and peak dislodgement force, defined as the peak force required to completely dislodge the stent from the delivery system, were measured. Three examples of each of the stents were tested using the shim test. RESULTS: The peak displacement force of Orsiro (3.1+/-0.8 N) was lower than that of Xience Sierra (5.8+/-0.5 N) [Firehawk 3.8+/-0.2 N, Resolute Onyx 4.5+/-1.5 N, Synergy 4.8+/-0.5 N (P=0.024)]. The peak dislodgement force was lowest in Orsiro (3.2+/-0.8 N) when compared to the other stents (Firehawk 6.6+/-0.6 N, Resolute Onyx 7.4+/-0.3 N, Synergy 11.8+/-0.4 N, Xience Sierra 11.1+/-1.6 N) (P<0.001); this remained significant in the multiple comparison analysis. During pullback of the stents, most stents buckled without removal. However, the whole Orsiro stent was completely removed from the delivery system. CONCLUSIONS: The dislodgement force of DESs differed between stent designs. The Orsiro stent was lower than that of other DES; additionally, it easily removed the whole stent from the delivery system. During the coronary intervention, operators should consider stent design and be cautious when pulling DES back in lesions with calcifications or a previously implanted stent, which are at high risk for stent dislodgement
SLI-1 Cbl Inhibits the Engulfment of Apoptotic Cells in C. elegans through a Ligase-Independent Function
The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway, which includes the small GTPase CED-10 Rac and the cytoskeletal regulator ABI-1, acts to rearrange the cytoskeleton of the engulfing cell. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. The second pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Cbl, the mammalian homolog of the C. elegans E3 ubiquitin ligase and adaptor protein SLI-1, interacts with Rac and Abi2 and modulates the actin cytoskeleton, suggesting it might act in engulfment. Our genetic studies indicate that SLI-1 inhibits apoptotic cell engulfment and DTC migration independently of the CED-10 Rac and CED-1 pathways. We found that the RING finger domain of SLI-1 is not essential to rescue the effects of SLI-1 deletion on cell migration, suggesting that its role in this process is ubiquitin ligase-independent. We propose that SLI-1 opposes the engulfment of apoptotic cells via a previously unidentified pathway.National Cancer Institute (U.S.) (Award K08CA104890
Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus
Cohesin is a chromatin-associated protein complex that mediates sister chromatid cohesion by connecting replicated DNA molecules. Cohesin also has important roles in gene regulation, but the mechanistic basis of this function is poorly understood. In mammalian genomes, cohesin co-localizes with CCCTC binding factor (CTCF), a zinc finger protein implicated in multiple gene regulatory events. At the imprinted IGF2-H19 locus, CTCF plays an important role in organizing allele-specific higher-order chromatin conformation and functions as an enhancer blocking transcriptional insulator. Here we have used chromosome conformation capture (3C) assays and RNAi-mediated depletion of cohesin to address whether cohesin affects higher order chromatin conformation at the IGF2-H19 locus in human cells. Our data show that cohesin has a critical role in maintaining CTCF-mediated chromatin conformation at the locus and that disruption of this conformation coincides with changes in IGF2 expression. We show that the cohesin-dependent, higher-order chromatin conformation of the locus exists in both G1 and G2 phases of the cell cycle and is therefore independent of cohesin's function in sister chromatid cohesion. We propose that cohesin can mediate interactions between DNA molecules in cis to insulate genes through the formation of chromatin loops, analogous to the cohesin mediated interaction with sister chromatids in trans to establish cohesion
- …
