102 research outputs found
Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study
Background
Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood.
Methods
We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution.
Results
Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms).
Conclusion
Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve
Lack of Cardiac Nerve Sprouting after Intramyocardial Transplantation of Bone Marrow-Derived Stem Cells in a Swine Model of Chronic Ischemic Myocardium
Previous experimental studies suggested that mesenchymal stem cell transplantation causes cardiac nerve sprouting; however, whether bone marrow (BM)-derived mononuclear cells (MNC) and endothelial progenitor cells (EPC) can also lead to cardiac nerve sprouting and alter gap junction expression remains unclear. We investigated the effect of electroanatomical mapping-guided direct intramyocardial transplantation of BM-MNC (n = 8) and CD31+EPC (n = 8) compared with saline control (n = 8) on cardiac nerve sprouting and gap junction expression in a swine model of chronic ischemic myocardium. At 12 weeks after transplantation, the distribution and density of cardiac nerve sprouting were determined by staining of tyrosine hydroxylase (TH) and growth associated protein 43(GAP-43) and expression of connexin 43 in the targeted ischemic and remote normal myocardium. After 12 weeks, no animal developed sudden death after the transplantation. There were no significant differences in the number of cells with positive staining of TH and GAP-43 in the ischemic and normal myocardium between three groups. Furthermore, expression of connexin 43 was also similar in the ischemic and normal myocardia in each group of animals (P > 0.05). The results of this study demonstrated that intramyocardial BM-derived MNC or EPC transplantation in a large animal model of chronic myocardial ischemia was not associated with increased cardiac nerve sprouting over the ischemic myocardium
Cerebellar-dependent delay eyeblink conditioning in adolescents with Specific Language Impairment
Cerebellar impairments have been hypothesized as part of the pathogenesis of Specific Language Impairment (SLI), although direct evidence of cerebellar involvement is sparse. Eyeblink Conditioning (EBC) is a learning task with well documented cerebellar pathways. This is the first study of EBC in affected adolescents and controls. 16 adolescent controls, 15 adolescents with SLI, and 12 adult controls participated in a delay EBC task. Affected children had low general language performance, grammatical deficits but no speech impairments. The affected group did not differ from the control adolescent or control adult group, showing intact cerebellar functioning on the EBC task. This study did not support cerebellar impairment at the level of basic learning pathways as part of the pathogenesis of SLI. Outcomes do not rule out cerebellar influences on speech impairment, or possible other forms of cerebellar functioning as contributing to SLI
Identification of concealed cardiomyopathy using next-generation sequencing-based genetic testing in Korean patients initially diagnosed with idiopathic ventricular fibrillation
AIMS: Idiopathic ventricular fibrillation (IVF) is a disease in which the cause of ventricular fibrillation cannot be identified despite comprehensive clinical evaluation. This study aimed to investigate the clinical yield and implications of genetic testing for IVF. METHODS AND RESULTS: This study was based on the multi-centre inherited arrhythmia syndrome registry in South Korea from 2014 to 2017. Next-generation sequencing-based genetic testing was performed that included 174 genes previously linked to cardiovascular disease. A total of 96 patients were clinically diagnosed with IVF. The mean age of the onset was 41.2 ± 12.7 years, and 79 patients were males (82.3%). Of these, 74 underwent genetic testing and four (5.4%) of the IVF probands had pathogenic or likely pathogenic variants (each having one of MYBPC3, MYH7, DSP, and TNNI3). All pathogenic or likely pathogenic variants were located in genes with definite evidence of a cardiomyopathy phenotype, either hypertrophic cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy. CONCLUSION: Next-generation sequencing-based genetic testing identified pathogenic or likely pathogenic variants in 5.4% of patients initially diagnosed with IVF, suggesting that genetic testing with definite evidence genes of cardiomyopathy may enable molecular diagnosis in a minority of patients with IVF. Further clinical evaluation and follow-up of patients with IVF with positive genotypes are needed to unveil concealed phenotypes, such as the pre-clinical phase of cardiomyopathy
Restitution analysis of alternans and its relationship to arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts
Alternans and arrhythmogenicity were studied in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced at high rates. Epicardial and endocardial monophasic action potentials were recorded and durations quantified at 90% repolarization. Alternans and arrhythmia occurred in hypokalaemic, but not normokalaemic (5.2 mM K+) hearts (P < 0.01): this was prevented by treatment with lidocaine (10 μM, P < 0.01). Fourier analysis then confirmed transition from monomorphic to polymorphic waveforms for the first time in the murine heart. Alternans and arrhythmia were associated with increases in the slopes of restitution curves, obtained for the first time in the murine heart, while the anti-arrhythmic effect of lidocaine was associated with decreased slopes. Thus, hypokalaemia significantly increased (P < 0.05) maximal gradients (from 0.55 ± 0.14 to 2.35 ± 0.67 in the epicardium and from 0.67 ± 0.13 to 1.87 ± 0.28 in the endocardium) and critical diastolic intervals (DIs) at which gradients equalled unity (from −2.14 ± 0.52 ms to 50.93 ± 14.45 ms in the epicardium and from 8.14 ± 1.49 ms to 44.64 ± 5 ms in the endocardium). While treatment of normokalaemic hearts with lidocaine had no significant effect (P > 0.05) on either maximal gradients (0.78 ± 0.27 in the epicardium and 0.83 ± 0.45 in the endocardium) or critical DIs (6.06 ± 2.10 ms and 7.04 ± 3.82 ms in the endocardium), treatment of hypokalaemic hearts with lidocaine reduced (P < 0.05) both these parameters (1.05 ± 0.30 in the epicardium and 0.89 ± 0.36 in the endocardium and 30.38 ± 8.88 ms in the epicardium and 31.65 ± 4.78 ms in the endocardium, respectively). We thus demonstrate that alternans contributes a dynamic component to arrhythmic substrate during hypokalaemia, that restitution may furnish an underlying mechanism and that these phenomena are abolished by lidocaine, both recapitulating and clarifying clinical findings
Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis
<p>Abstract</p> <p>Background</p> <p>Combining multiple evidence-types from different information sources has the potential to reveal new relationships in biological systems. The integrated information can be represented as a relationship network, and clustering the network can suggest possible functional modules. The value of such modules for gaining insight into the underlying biological processes depends on their functional coherence. The challenges that we wish to address are to define and quantify the functional coherence of modules in relationship networks, so that they can be used to infer function of as yet unannotated proteins, to discover previously unknown roles of proteins in diseases as well as for better understanding of the regulation and interrelationship between different elements of complex biological systems.</p> <p>Results</p> <p>We have defined the functional coherence of modules with respect to the Gene Ontology (GO) by considering two complementary aspects: (i) the fragmentation of the GO functional categories into the different modules and (ii) the most representative functions of the modules. We have proposed a set of metrics to evaluate these two aspects and demonstrated their utility in <it>Arabidopsis thaliana</it>. We selected 2355 proteins for which experimentally established protein-protein interaction (PPI) data were available. From these we have constructed five relationship networks, four based on single types of data: PPI, co-expression, co-occurrence of protein names in scientific literature abstracts and sequence similarity and a fifth one combining these four evidence types. The ability of these networks to suggest biologically meaningful grouping of proteins was explored by applying Markov clustering and then by measuring the functional coherence of the clusters.</p> <p>Conclusions</p> <p>Relationship networks integrating multiple evidence-types are biologically informative and allow more proteins to be assigned to a putative functional module. Using additional evidence types concentrates the functional annotations in a smaller number of modules without unduly compromising their consistency. These results indicate that integration of more data sources improves the ability to uncover functional association between proteins, both by allowing more proteins to be linked and producing a network where modular structure more closely reflects the hierarchy in the gene ontology.</p
Contact forces during hybrid atrial fibrillation ablation: an in vitro evaluation
PURPOSE: Data on epicardial contact force efficacy in dual epicardial–endocardial atrial fibrillation ablation procedures are lacking. We present an in vitro study on the importance of epicardial and endocardial contact forces during this procedure. METHODS: The in vitro setup consists of two separate chambers, mimicking the endocardial and epicardial sides of the heart. A circuit, including a pump and a heat exchanger, circulates porcine blood through the endocardial chamber. A septum, with a cut out, allows the placement of a magnetically fixed tissue holder, securing porcine atrial tissue, in the middle of both chambers. Two trocars provide access to the epicardium and endocardium. Force transducers mounted on both catheter holders allow real-time contact force monitoring, while a railing system allows controlled contact force adjustment. We histologically assessed different combinations of epi-endocardial radiofrequency ablation contact forces using porcine atria, evaluating the ablation’s diameters, area, and volume. RESULTS: An epicardial ablation with forces of 100 or 300 g, followed by an endocardial ablation with a force of 20 g did not achieve transmurality. Increasing endocardial forces to 30 and 40 g combined with an epicardial force ranging from 100 to 300 and 500 g led to transmurality with significant increases in lesion’s diameters, area, and volumes. CONCLUSIONS: Increased endocardial contact forces led to larger ablation lesions regardless of standard epicardial pressure forces. In order to gain transmurality in a model of a combined epicardial–endocardial procedure, a minimal endocardial force of 30 g combined with an epicardial force of 100 g is necessary
Measurement of serum hepcidin-25 levels as a potential test for diagnosing hemochromatosis and related disorders
Forecasting the effects of smoking prevalence scenarios on years of life lost and life expectancy from 2022 to 2050: a systematic analysis for the Global Burden of Disease Study 2021
- …
