10,728 research outputs found

    Compact Centimeter and Millimeter Sources in NGC 6334 I(N): OB Stars in the Making?

    Get PDF
    We present sensitive, high angular resolution 1.3 cm and 7 mm observations of the massive core NGC 6334 I(N), a region known to be undergoing massive star formation. At 1.3 cm we detect three sources, of which two had been previously detected at centimeter or millimeter wavelengths. At 7 mm we detect four sources. We suggest that three of these sources are subcomponents of the millimeter source SMA 1, that at these wavelengths is the dominant source in the region. The fourth 7 mm source appears to be associated with the relatively isolated source SMA 6. In all four 7 mm sources, the continuum emission is arising from structures of dimensions in the order of 1000 AU for which we estimate masses of order a few solar masses. We interpret these 7 mm sources as massive circumstellar disks that, however, surround stars or compact small stellar groups that at present have masses comparable to those of the disks but that may be accreting on their way to become massive stars.Comment: 13 pages, 3 figure

    Radio Continuum Sources Associated with AB Aur

    Get PDF
    We present high angular resolution, high-sensitivity Very Large Array observations at 3.6 cm of the Herbig Ae star AB Aur. This star is of interest since its circumstellar disk exhibits characteristics that have been attributed to the presence of an undetected low mass companion or giant gas planet. Our image confirms the continuum emission known to exist in association with the star, and detects a faint protuberance that extends about 0.30\rlap.{''}3 to its SE. Previous theoretical considerations and observational results are consistent with the presence of a companion to AB Aur with the separation and position angle derived from our radio data. We also determine the proper motion of AB Aur by comparing our new observations with data taken about 17 years ago and find values consistent with those found by Hipparcos.Comment: 6 pages, 1 figur

    VLA Imaging of the Disk Surrounding the Nearby Young Star TW Hya

    Get PDF
    The TW Hya system is perhaps the closest analog to the early solar nebula. We have used the Very Large Array to image TW Hya at wavelengths of 7mm and 3.6 cm with resolutions 0.1 arcseconds (about 5 AU) and 1.0 arcseconds (about 50 AU), respectively. The 7mm emission is extended and appears dominated by a dusty disk of radius larger than 50 AU surrounding the star. The 3.6 cm emission is unresolved and likely arises from an ionized wind or gyrosynchrotron activity. The dust spectrum and spatially resolved 7mm images of the TW Hya disk are fitted by a simple model with temperature and surface density described by radial power laws, T(r)r0.5T(r)\propto r^{-0.5} and Σ(r)r1\Sigma(r) \propto r^{-1}. These properties are consistent with an irradiated gaseous accretion disk of mass 0.03 M\sim0.03~{\rm M_{\odot}} with an accretion rate 108 Myr1\sim10^{-8}~{\rm M_{\odot}yr^{-1}} and viscosity parameter α=0.01\alpha = 0.01. The estimates of mass and mass accretion rates are uncertain as the gas-to-dust ratio in the TW Hya disk may have evolved from the standard interstellar value.Comment: 13 pages, 3 figures, accepted by ApJ Letter

    The Circumstellar Structure and Excitation Effects around the Massive Protostar Cepheus A HW 2

    Full text link
    We report SMA 335 GHz continuum observations with angular resolution of ~0.''3, together with VLA ammonia observations with ~1'' resolution toward Cep A HW 2. We find that the flattened disk structure of the dust emission observed by Patel et al. is preserved at the 0.''3 scale, showing an elongated structure of ~$0.''6 size (450 AU) peaking on HW 2. In addition, two ammonia cores are observed, one associated with a hot-core previously reported, and an elongated core with a double peak separated by ~1.''3 and with signs of heating at the inner edges of the gas facing HW 2. The double-peaked ammonia structure, as well as the double-peaked CH3CN structure reported previously (and proposed to be two independent hot-cores), surround both the dust emission as well as the double-peaked SO2 disk structure found by Jimenez-Serra et al. All these results argue against the interpretation of the elongated dust-gas structure as due to a chance-superposition of different cores; instead, they imply that it is physically related to the central massive object within a disk-protostar-jet system.Comment: 12 pages, 3 figures; accepted for publication in the Astrophysical Journa

    Kinematics of the Outflow From The Young Star DG Tau B: Rotation in the vicinities of an optical jet

    Get PDF
    We present 12^{12}CO(2-1) line and 1300 μ\mum continuum observations made with the Submillimeter Array (SMA) of the young star DG Tau B. We find, in the continuum observations, emission arising from the circumstellar disk surrounding DG Tau B. The 12^{12}CO(2-1) line observations, on the other hand, revealed emission associated with the disk and the asymmetric outflow related with this source. Velocity asymmetries about the flow axis are found over the entire length of the flow. The amplitude of the velocity differences is of the order of 1 -- 2 km s1^{-1} over distances of about 300 -- 400 AU. We interpret them as a result of outflow rotation. The sense of the outflow and disk rotation is the same. Infalling gas from a rotating molecular core cannot explain the observed velocity gradient within the flow. Magneto-centrifugal disk winds or photoevaporated disk winds can produce the observed rotational speeds if they are ejected from a keplerian disk at radii of several tens of AU. Nevertheless, these slow winds ejected from large radii are not very massive, and cannot account for the observed linear momentum and angular momentum rates of the molecular flow. Thus, the observed flow is probably entrained material from the parent cloud. DG Tau B is a good laboratory to model in detail the entrainment process and see if it can account for the observed angular momentum.Comment: Accepted to Ap

    Quiver Chern-Simons theories and 3-algebra orbifolds

    Full text link
    We attempt to derive quiver Chern-Simons-matter theories from the Bagger-Lambert theory with Nambu bracket, through an orbifold prescription which effectively induces a dimensional reduction of the internal space for 3-algebra. We consider M2-branes on an N=4 orbifold C2/Zk×C2C^2/Z_k\times C^2, and compare the result with the so-called dual Aharony-Bergman-Jafferis-Maldacena model, proposed recently by Hanany, Vegh, and Zaffaroni. Unlike the N=6 example C4/ZkC^4/Z_k, we find ambiguities in the matrix regularization.Comment: 10 pages, revtex
    corecore