882 research outputs found
A tale of three kingdoms: Members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria
Horizontal gene transfer (HGT) has played an important role in the evolution of nematodes. Among candidate genes, cyanase, which is typically found only in plants, bacteria and fungi, is present in more than 35 members of the Phylum Nematoda, but absent from free-living and clade V organisms. Phylogenetic analyses showed that the cyanases of clade I organisms Trichinella spp., Trichuris spp. and Soboliphyme baturini (Subclass: Dorylaimia) represent a well-supported monophyletic clade with plant cyanases. In contrast, all cyanases found within the Subclass Chromadoria which encompasses filarioids, ascaridoids and strongyloids are homologous to those of bacteria. Western blots exhibited typical multimeric forms of the native molecule in protein extracts of Trichinella spiralis muscle larvae, where immunohisto- chemical staining localized the protein to the worm hypodermis and underlying muscle. Recombinant Trichinella cyanase was bioactive where gene transcription profiles support functional activity in vivo. Results suggest that: (1) independent HGT in parasitic nematodes originated from different Kingdoms; (2) cyanase acquired an active role in the biology of extant Trichinella; (3) acquisition occurred more than 400 million years ago (MYA), prior to the divergence of the Trichinellida and Dioctophymatida, and (4) early, free-living ances- tors of the genus Trichinella had an association with terrestrial plants
Vergleichende Qualitätsuntersuchungen von alten und neuen Gemüsesorten zur Entwicklung von Zuchtzielen für den ökologischen Gemüsebau
Am Beispiel der Gemüsearten Möhren und Kohl wurden alte und neue Sorten sowie Sorten aus biologisch-dynamischer Selektion auf ihre Qualitätsmerkmale hin verglichen. Der Anbau erfolgte nach biologisch-dynamischen Landbaumethoden auf dem Dottenfelderhof in Bad Vilbel. Im Projekt kam ein breites Methodenspektrum zum Einsatz, das Geschmacksuntersuchungen mittels Humansensorik und instrumenteller Analytik umfasste. Diese Untersuchungen geben Aufschluss über die Zusammenhänge verschiedener äußerer und innerer Qualitätsmerkmale von insgesamt 39 Möhren- und 30 Kohlsorten.
Bei Möhren wurden durch die Humansensorik in beiden Jahren Hybridsorten (Espredo, Bolero) aufgrund ihrer hohen Süße als die jeweils beliebteste Sorte ermittelt. Diese Feststellung ist in Übereinstimmung mit Ergebnissen der Ernährungswissenschaft, dass allgemein eine Prefärenz zu sehr süßen Nahrungsmitteln zu verzeichnen ist. Aus der Sicht des ökologischen Landbaus werden allerdings samenfeste Sorten bevorzugt, die neben dem süßen Geschmack auch ein typisches Aroma charakterisiert aufweisen. Die am Dottenfelderhof angewendete Selektion auf Geschmack zeigt hierbei insbesondere bei den Rodelika-Typen einen deutlichen Züchtungsfortschritt in Richtung auf eine höhere sensorische Qualität. Durch die Aromaanalytik mittels Festphasen-Mikroextraktion konnten die Terpene Myrcen und Caryophyllen als Negativkomponenten (Off-flavour) ermittelt werden. Hier sollte geprüft werden, inwieweit sich diese Inhaltsstoffe als Markersubstanzen für eine Geschmacksselektion eignen.
Bei Kohl zeichnet sich die Sorte Holsteiner Platter durch die höchste Beliebtheit aus. Zwischen dem Gehalt an Glusosinolaten (gesundheitlich positiv und negativ wirksame Inhaltsstoffe) und den anderen Qualitätsparametern, insbesondere dem Geschmack, besteht kein strenger Zusammenhang. Im Ertrag stehen die samenfesten Sorten gleichrangig neben den Hybridsorten. Eine weitere Bearbeitung bezüglich der Uniformität der samenfesten Sorten wäre aber wünschenswert.
Auf Grundlage der Ergebnisse können Ziele für eine qualitätsorientierte Züchtung im ökologischen Gemüsebau erarbeitet werden
A precision study of the fine tuning in the DiracNMSSM
Recently the DiracNMSSM has been proposed as a possible solution to reduce
the fine tuning in supersymmetry. We determine the degree of fine tuning needed
in the DiracNMSSM with and without non-universal gaugino masses and compare it
with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed
parameter regions we perform a precise calculation of the Higgs mass. In
addition, we include the limits from direct SUSY searches and dark matter
abundance. We find that both models are comparable in terms of fine tuning,
with the minimal fine tuning in the GNMSSM slightly smaller.Comment: 20 pages + appendices, 10 figure
Between-individual variation in nematode burden among juveniles in a wild host:Variation in nematode burdens of juvenile birds
Parasite infection in young animals can affect host traits related to demographic processes such as survival and reproduction, and is therefore crucial to population viability. However, variation in infection among juvenile hosts is poorly understood. Experimental studies have indicated that effects of parasitism can vary with host sex, hatching order and hatch date, yet it remains unclear whether this is linked to differences in parasite burdens. We quantified gastrointestinal nematode burdens of wild juvenile European shags (Phalacrocorax aristotelis) using two in situ measures (endoscopy of live birds and necropsy of birds that died naturally) and one non-invasive proxy measure (fecal egg counts (FECs)). In situ methods revealed that almost all chicks were infected (98%), that infections established at an early age and that older chicks hosted more worms, but FECs underestimated prevalence. We found no strong evidence that burdens differed with host sex, rank or hatch date. Heavier chicks had higher burdens, demonstrating that the relationship between burdens and their costs is not straightforward. In situ measures of infection are therefore a valuable tool in building our understanding of the role that parasites play in the dynamics of structured natural populations
Interplay between Fermi gamma-ray lines and collider searches
We explore the interplay between lines in the gamma-ray spectrum and LHC searches involving missing energy and photons. As an example, we consider a singlet Dirac
fermion dark matter with the mediator for Fermi gamma-ray line at 130 GeV. A new chiral or local U(1) symmetry makes weak-scale dark matter natural and provides the axion or
Z 0 gauge boson as the mediator connecting between dark matter and electroweak gauge bosons. In these models, the mediator particle can be produced in association with a
monophoton at colliders and it produces large missing energy through the decays into a DM pair or ZZ; Z with at least one Z decaying into a neutrino pair. We adopt the monophoton searches with large missing energy at the LHC and impose the bounds on the coupling and mass of the mediator field in the models. We show that the parameter space of the Z 0 mediation model is already strongly constrained by the LHC 8TeV data, whereas a certain region of the parameter space away from the resonance in axion-like mediator models are bounded. We foresee the monophoton bounds on the Z 0 and axion mediation models at the LHC 14 TeV
Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors
We study a three stage dark matter and neutrino observatory based on
multi-ton two-phase liquid Xe and Ar detectors with sufficiently low
backgrounds to be sensitive to WIMP dark matter interaction cross sections down
to 10E-47 cm^2, and to provide both identification and two independent
measurements of the WIMP mass through the use of the two target elements in a
5:1 mass ratio, giving an expected similarity of event numbers. The same
detection systems will also allow measurement of the pp solar neutrino
spectrum, the neutrino flux and temperature from a Galactic supernova, and
neutrinoless double beta decay of 136Xe to the lifetime level of 10E27 - 10E28
y corresponding to the Majorana mass predicted from current neutrino
oscillation data. The proposed scheme would be operated in three stages G2, G3,
G4, beginning with fiducial masses 1-ton Xe + 5-ton Ar (G2), progressing to
10-ton Xe + 50-ton Ar (G3) then, dependent on results and performance of the
latter, expandable to 100-ton Xe + 500-ton Ar (G4). This method of scale-up
offers the advantage of utilizing the Ar vessel and ancillary systems of one
stage for the Xe detector of the succeeding stage, requiring only one new
detector vessel at each stage. Simulations show the feasibility of reducing or
rejecting all external and internal background levels to a level <1 events per
year for each succeeding mass level, by utilizing an increasing outer thickness
of target material as self-shielding. The system would, with increasing mass
scale, become increasingly sensitive to annual signal modulation, the agreement
of Xe and Ar results confirming the Galactic origin of the signal. Dark matter
sensitivities for spin-dependent and inelastic interactions are also included,
and we conclude with a discussion of possible further gains from the use of
Xe/Ar mixtures
The generalised NMSSM at one loop: fine tuning and phenomenology
We determine the degree of fine tuning needed in a generalised version of the
NMSSM that follows from an underlying Z4 or Z8 R symmetry. We find that it is
significantly less than is found in the MSSM or NMSSM and extends the range of
Higgs mass that have acceptable fine tuning up to Higgs masses of mh ~ 130 GeV.
For universal boundary conditions analogous to the CMSSM the phenomenology is
rather MSSM like with the singlet states typically rather heavy. For more
general boundary conditions the singlet states can be light, leading to
interesting signatures at the LHC and direct detection experiments.Comment: 20 pages, 9 figures, matches published versio
Return to Beringia: Parasites Reveal Cryptic Biogeographic History of North American Pikas
Traditional concepts of the Bering Land Bridge as a zone of predominantly eastward expansion from Eurasia and a staging area for subsequent colonization of lower latitudes in North America led to early inferences regarding biogeographic histories of North American faunas, many of which remain untested. Here we apply a host–parasite comparative phylogeographical (HPCP) approach to evaluate one such history, by testing competing biogeographic hypotheses for five lineages of host-specific parasites shared by the collared pika (Ochotona collaris) and American pika (Ochotona princeps) of North America. We determine whether the southern host species (O. princeps) was descended from a northern ancestor or vice versa. Three parasite phylogenies revealed patterns consistent with the hypothesis of a southern origin, which is corroborated by four additional parasite lineages restricted to O. princeps. This finding reverses the traditional narrative for the origins of North American pikas and highlights the role of dispersal from temperate North America into Beringia in structuring northern diversity considerably prior to the Holocene. By evaluating multiple parasite lineages simultaneously, the study demonstrates the power of HPCP for resolving complex biogeographic histories that are not revealed by characteristics of the host alone
Decaying into the Hidden Sector
The existence of light hidden sectors is an exciting possibility that may be
tested in the near future. If DM is allowed to decay into such a hidden sector
through GUT suppressed operators, it can accommodate the recent cosmic ray
observations without over-producing antiprotons or interfering with the
attractive features of the thermal WIMP. Models of this kind are simple to
construct, generic and evade all astrophysical bounds. We provide tools for
constructing such models and present several distinct examples. The light
hidden spectrum and DM couplings can be probed in the near future, by measuring
astrophysical photon and neutrino fluxes. These indirect signatures are
complimentary to the direct production signals, such as lepton jets, predicted
by these models.Comment: 40 pages, 5 figure
- …
