689 research outputs found

    Optimum timing for integrated pest management: Modelling rates of pesticide application and natural enemy releases

    Get PDF
    Many factors including pest natural enemy ratios, starting densities, timings of natural enemy releases, dosages and timings of insecticide applications and instantaneous killing rates of pesticides on both pests and natural enemies can affect the success of IPM control programmes. To address how such factors influence successful pest control, hybrid impulsive pest–natural enemy models with different frequencies of pesticide sprays and natural enemy releases were proposed and analyzed. With releasing both more or less frequent than the sprays, a stability threshold condition for a pest eradication periodic solution is provided. Moreover, the effects of times of spraying pesticides (or releasing natural enemies) and control tactics on the threshold condition were investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications. Multiple attractors from which the pest population oscillates with different amplitudes can coexist for a wide range of parameters and the switch-like transitions among these attractors showed that varying dosages and frequencies of insecticide applications and the numbers of natural enemies released are crucial. To see how the pesticide applications could be reduced, we developed a model involving periodic releases of natural enemies with chemical control applied only when the densities of the pest reached the given Economic Threshold. The results indicate that the pest outbreak period or frequency largely depends on the initial densities and the control tactics

    Assessment of Age, Gender, Mating Status, and Size on Single and Repeat Flight Capabilities of Heilipus lauri Boheman (Coleoptera: Curculionidae).

    Get PDF
    Heilipus lauri Boheman (Coleoptera: Curculionidae) is a specialist pest of avocado fruit and is considered an incursion risk for U.S. avocado producers. At the time work reported here was undertaken the flight capabilities of H. lauri were unknown. Consequently, proactive studies were undertaken to quantify aspects of this pests flight capabilities to inform potential future control efforts. Flight mill studies were conducted in a quarantine laboratory to measure the dispersal capacity of H. lauri with respect to gender, mating status, and size on the single and repeat flight capabilities of weevils. Gender, mating status, and size did not significantly affect measured flight parameters. Average total distances flown and flight velocity, and mean maximum flight bout distances and durations significantly declined as weevil age increased and when weevils engaged in repeat flights. Survivorship rates were significantly reduced as the number of successive flights undertaken increased. The distribution of total average flight distances flown and total cumulative flight distances flown was platykurtic. The implications of these findings are discussed in terms of developing incursion management plans

    Inventory of Thysanoptera Collected from French Polynesia.

    Get PDF
    v. ill. 23 cm.QuarterlyA survey for Thysanoptera was conducted in the Society (Tahiti, Moorea, and Raiatea), Marquesas (Hiva Oa, Nuku Hiva, Ua Huka, and Ua Pou), and Austral islands (Rurutu and Tubuai) archipelagos in French Polynesia from September 2003 to November 2005. At least 55 thrips species in 36 genera and three families were identified from 823 slide-mounted specimens that were collected from 61 host plants in 33 families. Twelve species are considered to be important pests. The greatest diversity of species, 43 (77%), was collected from the Society Islands, with 60% being recorded from Tahiti alone. Species diversity was intermediate in the Marquesas Islands at 43% (24 species collected), with 35% or 19 species being recorded from Nuku Hiva. Lowest diversity was recorded for the Austral Islands, with 38% or 21 species being found in that archipelago. Less than 10% of collected species are likely to be native, with the majority of identified thrips (>90%) in French Polynesia representing a high diversity of exotic species (leaf, flower, and fungus feeders, and four predatory species) that have successfully infiltrated other island groups in the South Pacific.Survey results and subsequent estimates of thrips species diversity in French Polynesia should be interpreted with caution due to uncontrolled variation in sampling intensity that was affected by survey duration, time of year, and visitation frequency to islands
    corecore