1,496 research outputs found
Developing and testing a measure of consultation-based reassurance for people with low back pain in primary care:a cross-sectional study
BACKGROUND: Reassurance from physicians is commonly recommended in guidelines for the management of low back pain (LBP), but the process of reassurance and its impact on patients is poorly researched. We aimed to develop a valid and reliable measure of the process of reassurance during LBP consultations. METHODS: Items representing the data-gathering stage of the consultation and affective and cognitive reassurance were generated from literature on physician-patient communication and piloted with expert researchers and physicians, a Patient and Public Involvement group, and LBP patients to form a questionnaire. Patients presenting for LBP at 43 General Practice surgeries were sent the questionnaire. The questionnaire was analysed with Rasch modelling, using two samples from the same population of recent LBP consultations: the first (n = 157, follow-up n = 84) for exploratory analysis and the second (n = 162, follow-up n = 74) for confirmatory testing. Responses to the questionnaire were compared with responses to satisfaction and enablement scales to assess the external validity of the items, and participants completed the questionnaire again one-week later to assess test-retest reliability. RESULTS: The questionnaire was separated into four subscales: data-gathering, relationship-building, generic reassurance, and cognitive reassurance, each containing three items. All subscales showed good validity within the Rasch models, and good reliability based on person- and item-separations and test-retest reliability. All four subscales were significantly positively correlated with satisfaction and enablement for both samples. The final version of the questionnaire is presented here. CONCLUSIONS: Overall, the measure has demonstrated a good level of validity and generally acceptable reliability. This is the first measure to focus specifically on reassurance for LBP in primary care settings, and will enable researchers to further understanding of what is reassuring within the context of low back pain consultations, and how outcomes are affected by different types of reassurance. Additionally, the measure may provide a useful training and audit tool for physicians. The new measure requires testing in prospective cohorts, and would benefit from further validation against ethnographic observation of consultations in real time
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK
The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
The Effectiveness of Pharmacological and Non-Pharmacological Interventions for Improving Glycaemic Control in Adults with Severe Mental Illness: A Systematic Review and Meta-Analysis
People with severe mental illness (SMI) have reduced life expectancy compared with the general population, which can be explained partly by their increased risk of diabetes. We conducted a meta-analysis to determine the clinical effectiveness of pharmacological and non-pharmacological interventions for improving glycaemic control in people with SMI (PROSPERO registration: CRD42015015558). A systematic literature search was performed on 30/10/2015 to identify randomised controlled trials (RCTs) in adults with SMI, with or without a diagnosis of diabetes that measured fasting blood glucose or glycated haemoglobin (HbA1c). Screening and data extraction were carried out independently by two reviewers. We used random effects meta-analysis to estimate effectiveness, and subgroup analysis and univariate meta-regression to explore heterogeneity. The Cochrane Collaboration’s tool was used to assess risk of bias. We found 54 eligible RCTs in 4,392 adults (40 pharmacological, 13 behavioural, one mixed intervention). Data for meta-analysis were available from 48 RCTs (n = 4052). Both pharmacological (mean difference (MD), -0.11mmol/L; 95% confidence interval (CI), [-0.19, -0.02], p = 0.02, n = 2536) and behavioural interventions (MD, -0.28mmol//L; 95% CI, [-0.43, -0.12], p<0.001, n = 956) were effective in lowering fasting glucose, but not HbA1c (pharmacological MD, -0.03%; 95% CI, [-0.12, 0.06], p = 0.52, n = 1515; behavioural MD, 0.18%; 95% CI, [-0.07, 0.42], p = 0.16, n = 140) compared with usual care or placebo. In subgroup analysis of pharmacological interventions, metformin and antipsychotic switching strategies improved HbA1c. Behavioural interventions of longer duration and those including repeated physical activity had greater effects on fasting glucose than those without these characteristics. Baseline levels of fasting glucose explained some of the heterogeneity in behavioural interventions but not in pharmacological interventions. Although the strength of the evidence is limited by inadequate trial design and reporting and significant heterogeneity, there is some evidence that behavioural interventions, antipsychotic switching, and metformin can lead to clinically important improvements in glycaemic measurements in adults with SMI
Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach
Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics
A core outcome set for evaluating self-management interventions in people with comorbid diabetes and severe mental illness : study protocol for a modified Delphi study and systematic review
BACKGROUND: People with diabetes and comorbid severe mental illness (SMI) form a growing population at risk of increased mortality and morbidity compared to those with diabetes or SMI alone. There is increasing interest in interventions that target diabetes in SMI in order to help to improve physical health and reduce the associated health inequalities. However, there is a lack of consensus about which outcomes are important for this comorbid population, with trials differing in their focus on physical and mental health. A core outcome set, which includes outcomes across both conditions that are relevant to patients and other key stakeholders, is needed. METHODS: This study protocol describes methods to develop a core outcome set for use in effectiveness trials of self-management interventions for adults with comorbid type-2 diabetes and SMI. We will use a modified Delphi method to identify, rank, and agree core outcomes. This will comprise a two-round online survey and multistakeholder workshops involving patients and carers, health and social care professionals, health care commissioners, and other experts (e.g. academic researchers and third sector organisations). We will also select appropriate measurement tools for each outcome in the proposed core set and identify gaps in measures, where these exist. DISCUSSION: The proposed core outcome set will provide clear guidance about what outcomes should be measured, as a minimum, in trials of interventions for people with coexisting type-2 diabetes and SMI, and improve future synthesis of trial evidence in this area. We will also explore the challenges of using online Delphi methods for this hard-to-reach population, and examine differences in opinion about which outcomes matter to diverse stakeholder groups. TRIAL REGISTRATION: COMET registration: http://www.comet-initiative.org/studies/details/911 . Registered on 1 July 2016
Observation of epitaxially ordered twinned zinc aluminate “nanoblades” on c-capphire
We report the observation of a novel nanostructured growth mode of the ceramic spinel zinc aluminate grown on c-sapphire in the form of epitaxially ordered twinned crystallites with pronounced vertically aligned “nanoblades” on top of these crystallites. The nanostructures are formed on bare c-sapphire substrates using a vapour phase transport method. Electron microscopy images reveal the nanostructure morphology and dimensions and allow direct and indirect observation of the twin boundary location in a number of samples. The nanoblade structure with sharply rising sidewalls gives rise to a distinctive bright contrast in secondary electron images in scanning electron microscopy measurements
Recommended from our members
The compensatory potential of increased immigration following intensive American mink population control is diluted by male-biased dispersal
Attempts to mitigate the impact of invasive species on native ecosystems increasingly target large land masses where control, rather than eradication, is the management objective. Depressing numbers of invasive species to a level where their impact on native biodiversity is tolerable requires overcoming the impact of compensatory immigration from non-controlled portions of the landscape. Because of the expected scale-dependency of dispersal, the overall size of invasive species management areas relative to the dispersal ability of the controlled species will determine the size of any effectively conserved core area unaffected by immigration from surrounding areas. However, when dispersal is male-biased, as in many mammalian invasive carnivores, males may be overrepresented amongst immigrants, reducing the potential growth rate of invasive species populations in re-invaded areas. Using data collected from a project that gradually imposed spatially comprehensive control on invasive American mink (Neovison vison) over a 10,000 km2 area of NE Scotland, we show that mink captures were reduced to almost zero in 3 years, whilst there was a threefold increase in the proportion of male immigrants. Dispersal was often long distance and linking adjacent river catchments, asymptoting at 38 and 31 km for males and females respectively. Breeding and dispersal were spatially heterogeneous, with 40 % of river sections accounting for most captures of juvenile (85 %), adult female (65 %) and immigrant (57 %) mink. Concentrating control effort on such areas, so as to turn them into “attractive dispersal sinks” could make a disproportionate contribution to the management of recurrent re-invasion of mainland invasive species management areas
VAMP7 modulates ciliary biogenesis in kidney cells
Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis. © 2014 Szalinski et al
- …
