332 research outputs found

    Impact of Climate Change on Irrigation Water Availability, Crop Water Requirements and Soil Salinity in the SJV, CA

    Get PDF
    We examine potential regional-scale impacts of global climate change on sustainability of irrigated agriculture, focusing on the western San Joaquin Valley in California. We consider potential changes in irrigation water demand and supply, and quantify impacts on cropping patterns, groundwater pumping, groundwater levels, soil salinity, and crop yields. Our analysis is based on archived output from General Circulation Model (GCM) climate projections through 2100, which are downscaled here to the scale of the study area (~30 km across). We account for uncertainty in GCM climate projections by considering output from two different GCM\u27s, each using three greenhouse gas emission scenarios. Significant uncertainty in projected precipitation translates into uncertainty of future water supply, ranging from an increase of 10% to a decrease of 30% in 2100. On the other hand, temperature projections are much less variable, resulting in consistent projections of crop water demand for all climate change scenarios. Crop water demand is expected to change very little, due to compensating effects of rising temperature on evaporative demand and crop growth rate. Reductions in surface water supply are projected to be offset by groundwater pumping and land fallowing. Simulations of subsurface flow and salt transport with a regional-scale hydro-salinity model suggest a small expansion in salt-affected area, compared to current conditions. However, in all scenarios salinity is expected to increase in downslope areas, thereby limiting crop production. This is especially significant given an anticipated demand-driven switch to high-value, salt-sensitive crops. Results show that technological adaptation, such as improvements in irrigation efficiency, may partly mitigate these effects

    Climate change impacts on water demand and salinity in California\u27s irrigated agriculture

    Get PDF
    This paper examines potential regional-scale impacts of climate change on sustainability of irrigated agriculture, focusing on the western San Joaquin Valley in California. We consider potential changes in irrigation water demand and supply, and quantify impacts on the hydrologic system, soil and groundwater salinity with associated crop yield reductions. Our analysis is based on archived output from General Circulation Model (GCM) climate projections through 2100, which were downscaled to the 1,400 km2 study area. We account for uncertainty in GCM climate projections by considering two different GCM\u27s, each using three greenhouse gas emission scenarios. Significant uncertainty in projected precipitation creates large uncertainty in surface water supply, ranging from a decrease of 26% to an increase of 14% in 2080-2099. Changes in projected irrigation water demand ranged from a decrease of 13% to an increase of 3% at the end of the 21st century. Greatest demand reductions were computed for the dry and warm scenarios, because of increased land fallowing with corresponding decreased total crop water requirements. A decrease in seasonal crop ET by climate warming, despite an increase in evaporative demand, was attributed to faster crop development with increasing temperatures. Simulations of hydrologic response to climate-induced changes suggest that the salt-affected area will be slightly expanded. However, irrespective of climate change, salinity is expected to increase in downslope areas, thereby limiting crop production to mostly upslope areas of the simulation domain. Results show that increasing irrigation efficiency may be effective in controlling salinization, by reducing groundwater recharge and improving soil drainage, and in mitigating climate warming effects, by reducing the need for groundwater pumping to satisfy crop water requirements

    Penetrômetro Combinado com Sensor de Umidade por TDR para Estudo da Compactação dos Solos.

    Get PDF
    bitstream/CNPDIA/10486/1/CT41_2000.pd

    Calibração e uso de uma sonda combinada tensiômetro/TDR.

    Get PDF
    A curva de retenção da água no solo é uma relação entre a umidade volumétrica e a tensão matricial do solo. Essa relação varia amplamente de solo para solo e tal variação depende fatores ligados aos valores de tensão superficial. Para baixos valores (0 a 1 bar) a dependência maior é em relação à capilaridade e à distribuição dos tamanhos de poros, portanto, fortemente da estrutura do solo.bitstream/CNPDIA/9714/1/CT39_2000.pd

    Tilburg-Noordoost : eilanden van tegendelen

    Get PDF

    Antimicrobial use in European acute care hospitals: results from the second point prevalence survey (PPS) of healthcare-associated infections and antimicrobial use, 2016 to 2017

    Get PDF
    Antimicrobial agents used to treat infections are life-saving. Overuse may result in more frequent adverse effects and emergence of multidrug-resistant microorganisms. In 2016-17, we performed the second point-prevalence survey (PPS) of healthcare-associated infections (HAIs) and antimicrobial use in European acute care hospitals. We included 1,209 hospitals and 310,755 patients in 28 of 31 European Union/European Economic Area (EU/EEA) countries. The weighted prevalence of antimicrobial use in the EU/EEA was 30.5% (95% CI: 29.2-31.9%). The most common indication for prescribing antimicrobials was treatment of a community-acquired infection, followed by treatment of HAI and surgical prophylaxis. Over half (54.2%) of antimicrobials for surgical prophylaxis were prescribed for more than 1 day. The most common infections treated by antimicrobials were respiratory tract infections and the most commonly prescribed antimicrobial agents were penicillins with beta-lactamase inhibitors. There was wide variation of patients on antimicrobials, in the selection of antimicrobial agents and in antimicrobial stewardship resources and activities across the participating countries. The results of the PPS provide detailed information on antimicrobial use in European acute care hospitals, enable comparisons between countries and hospitals, and highlight key areas for national and European action that will support efforts towards prudent use of antimicrobials

    An interlaboratory study of TEX86 and BIT analysis of sediments, extracts and standard mixtures.

    Get PDF
    Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3-4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the "true" (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values

    A unique bacteriohopanetetrol stereoisomer of marine anammox

    Get PDF
    Anaerobic ammonium oxidation (anammox) is a major process of bioavailable nitrogen removal from marine systems. Previously, a bacteriohopanetetrol (BHT) isomer, with unknown stereochemistry, eluting later than BHT when examined by high performance liquid chromatography (HPLC), was detected in ‘Ca. Scalindua profunda’ and proposed as a biomarker for anammox in marine paleo-environments. However, the utility of this BHT isomer as an anammox biomarker is hindered by the fact that four other, non-anammox, bacteria are also known to produce a late-eluting BHT stereoisomer. The stereochemistry in Acetobacter pasteurianus, Komagataeibacter xylinus and Frankia sp. was known to be 17ß, 21ß(H), 22R, 32R, 33R, 34R (BHT-34R). The stereochemistry of the late-eluting BHT in Methylocella palustris was unknown. To determine if marine anammox bacteria produce a unique BHT isomer, we studied the BHT distributions and stereochemistry of known BHT isomer producers and of previously unscreened marine (‘Ca. Scalindua brodeae’) and freshwater (‘Ca. Brocadia spp.’) anammox bacteria, using HPLC and gas chromatographiy (GC) analysis of acetylated BHTs and ultra high performance liquid chromatography (UHPLC)-high resolution mass spectrometry (HRMS) analysis of non-acetylated BHTs. The 34R stereochemistry was confirmed for the BHT isomers in Ca. Brocadia sp. and Methylocella palustris. However, ‘Ca. Scalindua spp.’ synthesises a stereochemically distinct BHT isomer, with still unconfirmed stereochemistry (BHT-x). Only GC analysis of acetylated BHT and UHPLC analysis of non-acetylated BHT distinguished between late-eluting BHT isomers. Acetylated BHT-x and BHT-34R co-elute when examined by HPLC. As BHT-x is currently only known to be produced by ‘Ca. Scalindua spp.’, it may be a biomarker for marine anammo
    corecore