958 research outputs found
Reassessment of Acarbose as a Transition State Analogue Inhibitor of Cyclodextrin Glycosyltransferase
The binding of several different active site mutants of Bacillus circulans cyclodextrin glycosyltransferase to the inhibitor acarbose has been investigated through measurement of Ki values. The mutations represent several key amino acid positions, most of which are believed to play important roles in governing the product specificity of cyclodextrin glycosyltransferase. Michaelis-Menten parameters for the substrates α-maltotriosyl fluoride (αG3F) and α-glucosyl fluoride (αGF) with each mutant have been determined by following the enzyme-catalyzed release of fluoride with an ion-selective fluoride electrode. In both cases, reasonable correlations are observed in logarithmic plots relating the Ki value for acarbose with each mutant and both kcat/Km and Km for the hydrolysis of either substrate by the corresponding mutants. This indicates that acarbose, as an inhibitor, is mimicking aspects of both the ground state and the transition state. A better correlation is observed for αGF (r = 0.98) than αG3F (r = 0.90), which can be explained in terms of the modes of binding of these substrates and acarbose. Re-refinement of the previously determined crystal structure of wild-type CGTase complexed with acarbose reveals a binding mode consistent with the transition state analogue character of this inhibitor.
Microstructure modelling of hot deformation of Al–1%Mg alloy
This study presents the application of the finite elementmethod and intelligent systems techniques to the
prediction of microstructural mapping for aluminium alloys. Here, the material within each finite element
is defined using a hybrid model. The hybrid model is based on neuro-fuzzy and physically based components
and it has been combined with the finite element technique. The model simulates the evolution of
the internal state variables (i.e. dislocation density, subgrain size and subgrain boundary misorientation)
and their effect on the recrystallisation behaviour of the stock. This paper presents the theory behind
the model development, the integration between the numerical techniques, and the application of the
technique to a hot rolling operation using aluminium, 1 wt% magnesium alloy. Furthermore, experimental
data from plane strain compression (PSC) tests and rolling are used to validate the modelling outcome.
The results show that the recrystallisation kinetics agree well with the experimental results for different
annealing times. This hybrid approach has proved to be more accurate than conventional methods using empirical equations
Einstein, incompleteness, and the epistemic view of quantum states
Does the quantum state represent reality or our knowledge of reality? In
making this distinction precise, we are led to a novel classification of hidden
variable models of quantum theory. Indeed, representatives of each class can be
found among existing constructions for two-dimensional Hilbert spaces. Our
approach also provides a fruitful new perspective on arguments for the
nonlocality and incompleteness of quantum theory. Specifically, we show that
for models wherein the quantum state has the status of something real, the
failure of locality can be established through an argument considerably more
straightforward than Bell's theorem. The historical significance of this result
becomes evident when one recognizes that the same reasoning is present in
Einstein's preferred argument for incompleteness, which dates back to 1935.
This fact suggests that Einstein was seeking not just any completion of quantum
theory, but one wherein quantum states are solely representative of our
knowledge. Our hypothesis is supported by an analysis of Einstein's attempts to
clarify his views on quantum theory and the circumstance of his otherwise
puzzling abandonment of an even simpler argument for incompleteness from 1927.Comment: 18 pages, 8 figures, 1 recipe for cupcakes; comments welcom
Relational EPR
We study the EPR-type correlations from the perspective of the relational
interpretation of quantum mechanics. We argue that these correlations do not
entail any form of 'non-locality', when viewed in the context of this
interpretation. The abandonment of strict Einstein realism implied by the
relational stance permits to reconcile quantum mechanics, completeness,
(operationally defined) separability, and locality.Comment: Revised, published versio
The Impact of New EUV Diagnostics on CME-Related Kinematics
We present the application of novel diagnostics to the spectroscopic
observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultraviolet
Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently
developed line profile asymmetry analysis to the spectroscopic observation of
NOAA AR 10930 on 14-15 December 2006 to three raster observations before and
during the eruption of a 1000km/s CME. We see the impact that the observer's
line-of-sight and magnetic field geometry have on the diagnostics used.
Further, and more importantly, we identify the on-disk signature of a
high-speed outflow behind the CME in the dimming region arising as a result of
the eruption. Supported by recent coronal observations of the STEREO
spacecraft, we speculate about the momentum flux resulting from this outflow as
a secondary momentum source to the CME. The results presented highlight the
importance of spectroscopic measurements in relation to CME kinematics, and the
need for full-disk synoptic spectroscopic observations of the coronal and
chromospheric plasmas to capture the signature of such explosive energy release
as a way of providing better constraints of CME propagation times to L1, or any
other point of interest in the heliosphere.Comment: Accepted to appear in Solar Physics Topical Issue titled "Remote
Sensing of the Inner Heliosphere". Manuscript has 14 pages, 5 color figures.
Movies supporting the figures can be found in
http://download.hao.ucar.edu/pub/mscott/papers/Weathe
Nitrogen on the table: the influence of food choices on nitrogen emissions and the European environment
This ENA Special Report has been prepared by the Expert Panel on Nitrogen and Food of the
UNECE Task Force on Reactive Nitrogen. It examines nitrogen and other pollution losses from the food
system and assesses the potential impacts of alternative diets on emissions of nitrogen to air and water.
It then considers the potential impacts on land-use change and associated greenhouse gas emissions.
The study finds that reductions in reactive nitrogen emissions associated with decreased intake of meat
and dairy products would have substantial benefits, not only within the EU, but also at continental and
global scales. The scenarios also match to consumption patterns that are better aligned with international
dietary recommendations
Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics
We present a study by linear stability analysis and large-scale Monte Carlo
simulations of a simple model of biological coevolution. Selection is provided
through a reproduction probability that contains quenched, random interspecies
interactions, while genetic variation is provided through a low mutation rate.
Both selection and mutation act on individual organisms. Consistent with some
current theories of macroevolutionary dynamics, the model displays
intermittent, statistically self-similar behavior with punctuated equilibria.
The probability density for the lifetimes of ecological communities is well
approximated by a power law with exponent near -2, and the corresponding power
spectral densities show 1/f noise (flicker noise) over several decades. The
long-lived communities (quasi-steady states) consist of a relatively small
number of mutualistically interacting species, and they are surrounded by a
``protection zone'' of closely related genotypes that have a very low
probability of invading the resident community. The extent of the protection
zone affects the stability of the community in a way analogous to the height of
the free-energy barrier surrounding a metastable state in a physical system.
Measures of biological diversity are on average stationary with no discernible
trends, even over our very long simulation runs of approximately 3.4x10^7
generations.Comment: 20 pages RevTex. Minor revisions consistent with published versio
Persistence in a Stationary Time-series
We study the persistence in a class of continuous stochastic processes that
are stationary only under integer shifts of time. We show that under certain
conditions, the persistence of such a continuous process reduces to the
persistence of a corresponding discrete sequence obtained from the measurement
of the process only at integer times. We then construct a specific sequence for
which the persistence can be computed even though the sequence is
non-Markovian. We show that this may be considered as a limiting case of
persistence in the diffusion process on a hierarchical lattice.Comment: 8 pages revte
Saint Vincent and Islam
Vincent de Paul took a great interest in Islamic countries; indeed, the Congregation’s first foreign mission was to Constantinople in the Ottoman Empire. He was especially concerned with missions to North African countries and continued them despite considerable obstacles. While conversions of Muslims were desirable, they were to be made discreetly, and the confreres’ main priorities were to minister spiritually and corporally to Christian slaves. If Muslims were to be converted, he believed that they would be won over by deeds and love rather than by force or arguments. Yves Danjou explains how Vincent respected Muslims, especially considering the era. He was well-informed about them from different sources and recommended some of their practices and actions as examples to the Congregation and the Daughters of Charity. He also understood Muslim thought about Jesus and Mary. Vincent’s pastoral theology is explained. Danjou also discusses the importance of Islam in Vincent de Paul’s time, France’s relationship with Islamic countries, and French knowledge of Islam
- …
