455 research outputs found
A phylogenetic analysis of Orlando Gibbons's Prelude in G
This is the author accepted manuscript. The final version is available from Oxford University Press via http://dx.doi.org/10.1093/em/cau10
Recommendations for a core outcome set for measuring standing balance in adult populations: a consensus-based approach
Standing balance is imperative for mobility and avoiding falls. Use of an excessive number of standing balance measures has limited the synthesis of balance intervention data and hampered consistent clinical practice.To develop recommendations for a core outcome set (COS) of standing balance measures for research and practice among adults.A combination of scoping reviews, literature appraisal, anonymous voting and face-to-face meetings with fourteen invited experts from a range of disciplines with international recognition in balance measurement and falls prevention. Consensus was sought over three rounds using pre-established criteria.The scoping review identified 56 existing standing balance measures validated in adult populations with evidence of use in the past five years, and these were considered for inclusion in the COS.Fifteen measures were excluded after the first round of scoring and a further 36 after round two. Five measures were considered in round three. Two measures reached consensus for recommendation, and the expert panel recommended that at a minimum, either the Berg Balance Scale or Mini Balance Evaluation Systems Test be used when measuring standing balance in adult populations.Inclusion of two measures in the COS may increase the feasibility of potential uptake, but poses challenges for data synthesis. Adoption of the standing balance COS does not constitute a comprehensive balance assessment for any population, and users should include additional validated measures as appropriate.The absence of a gold standard for measuring standing balance has contributed to the proliferation of outcome measures. These recommendations represent an important first step towards greater standardization in the assessment and measurement of this critical skill and will inform clinical research and practice internationally
Plant ecology meets animal cognition: impacts of animal memory on seed dispersal
We propose that an understanding of animal learning and memory is critical to predicting the impacts of animals on plant populations through
processes such as seed dispersal, pollination and herbivory. Focussing on endozoochory, we review the evidence that animal memory plays a role in seed
dispersal, and present a model which allows us to explore the fundamental consequences of memory for this process. We demonstrate that decision-making by animals based on their previous experiences has the potential to determine which plants are visited, which fruits are selected to be eaten from the plant and where seeds are subsequently deposited, as well as being an important determinant of animal survival. Collectively, these results suggest that the impact of animal learning and memory on seed dispersal is likely to be extremely important, although to date our understanding of these processes suffers from a conspicuous lack of empirical support. This is partly because of the difficulty of conducting appropriate experiments but is
also the result of limited interaction between plant ecologists and those who work on animal cognition
Early invaders - Farmers, the granary weevil and other uninvited guests in the Neolithic
The Neolithic and the spread of agriculture saw several introductions of insect species associated with the environments and activities of the first farmers. Fossil insect research from the Neolithic lake settlement of Dispilio in Macedonia, northern Greece, provides evidence for the early European introduction of a flightless weevil, the granary weevil, Sitophilus granarius, which has since become cosmopolitan and one of the most important pests of stored cereals. The records of the granary weevil from the Middle Neolithic in northern Greece illuminate the significance of surplus storage for the spread of agriculture. The granary weevil and the house fly, Musca domestica were also introduced in the Neolithic of central Europe, with the expansion of Linear Band Keramik (LBK) culture groups. This paper reviews Neolithic insect introductions in Europe, including storage pests, discusses their distribution during different periods and the reasons behind the trends observed. Storage farming may be differentiated from pastoral farming on the basis of insect introductions arriving with incoming agricultural groups
The Importance of Tree Size and Fecundity for Wind Dispersal of Big-Leaf Mahogany
Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae) in the Brazilian Amazon at 25 relatively isolated trees using multiple 1-m wide belt transects extended 100 m downwind. Tree diameter and fecundity correlated positively with increased seed shadow extent; but in combination large, high fecundity trees contributed disproportionately to longer-distance dispersal events (>60 m). Among three empirical models fitted to seed density vs. distance in one dimension, the Student-t (2Dt) generally fit best (compared to the negative exponential and inverse power). When seedfall downwind was modelled in two dimensions using a normalised sample, it peaked furthest downwind (c. 25 m) for large, high-fecundity trees; with the inverse Gaussian and Weibull functions providing comparable fits that were slightly better than the lognormal. Although most seeds fell within 30 m of parent trees, relatively few juveniles were found within this distance, resulting in juvenile-to-seed ratios peaking at c. 35–45 m. Using the 2Dt model fits to predict seed densities downwind, coupled with known fecundity data for 2000–2009, we evaluated potential Swietenia regeneration near adults (≤30 m dispersal) and beyond 30 m. Mean seed arrival into canopy gaps >30 m downwind was more than 3× greater for large, high fecundity trees than small, high-fecundity trees. Tree seed production did not necessarily scale up proportionately with diameter, and was not consistent across years, and this resulting intraspecific variation can have important consequences for local patterns of dispersal in forests. Our results have important implications for management and conservation of big-leaf mahogany populations, and may apply to other threatened wind-dispersed Meliaceae trees
Significance of Twist expression and its association with E-cadherin in esophageal squamous cell carcinoma
in esophageal squamous cell carcinom
Bird attributes, plant characteristics, and seed dispersal of Pera glabrata (Schott, 1858), (Euphorbiaceae) in a disturbed cerrado area
Reproductive responses to varying food supply in a population of Darwin's finches: Clutch size, growth rates and hatching synchrony
I show how food shortage affects reproduction in a population of Darwin's Medium Ground Finches, Geospiza fortis . Despite the common occurrence of starvation and absence of nest predation, hatching is typically nighly synchronous and adaptive brood reductionappears to be absent. Variation in both growth rates and clutch size in association with the varying conditions is documented. This variation is interpreted as being a direct response to environmental conditions rather than adaptive phenotypic plasticity. I conclude that selection pressures to raise one or two chicks during times of food shortage, or to delay growth rates, are weak or absent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47759/1/442_2004_Article_BF00378307.pd
The Missing Part of Seed Dispersal Networks: Structure and Robustness of Bat-Fruit Interactions
Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i) some bat species depend more on fruits than others, and (ii) that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H2' = 0.37±0.10, mean ± SD) and similar nestedness (NODF = 0.56±0.12) than pollination networks. All networks were modular (M = 0.32±0.07), and had on average four cohesive subgroups (modules) of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum), although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10) and plants (R = 0.68±0.09). Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks
Phenology and frugivory by birds on Miconia ligustroides (MELASTOMATACEAE) in a fragment of cerrado, southeastern Brazil
- …
