30 research outputs found

    Raman spectroscopy in head and neck cancer

    Get PDF
    In recent years there has been much interest in the use of optical diagnostics in cancer detection. Early diagnosis of cancer affords early intervention and greatest chance of cure. Raman spectroscopy is based on the interaction of photons with the target material producing a highly detailed biochemical 'fingerprint' of the sample. It can be appreciated that such a sensitive biochemical detection system could confer diagnostic benefit in a clinical setting. Raman has been used successfully in key health areas such as cardiovascular diseases, and dental care but there is a paucity of literature on Raman spectroscopy in Head and Neck cancer. Following the introduction of health care targets for cancer, and with an ever-aging population the need for rapid cancer detection has never been greater. Raman spectroscopy could confer great patient benefit with early, rapid and accurate diagnosis. This technique is almost labour free without the need for sample preparation. It could reduce the need for whole pathological specimen examination, in theatre it could help to determine margin status, and finally peripheral blood diagnosis may be an achievable target

    Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study

    Get PDF
    The currently prescribed tests for asthma diagnosis require compulsory patient compliance, and are usually not sensitive to mild asthma. Development of an objective test using minimally invasive samples for diagnosing and monitoring of the response of asthma may help better management of the disease. Raman spectroscopy (RS) has previously shown potential in several biomedical applications, including pharmacology and forensics. In this study, we have explored the feasibility of detecting asthma and determining treatment response in asthma patients, through RS of serum. Serum samples from 44 asthma subjects of different grades (mild, moderate, treated severe and untreated severe) and from 15 reference subjects were subjected to Raman spectroscopic analysis and YKL-40 measurements. The force expiratory volume in 1 second (FEV1) values were used as gold standard and the serum YKL-40 levels were used as an additional parameter for diagnosing the different grades of asthma. For spectral acquisition, serum was placed on a calcium fluoride (CaF(2)) window and spectra were recorded using Raman microprobe. Mean and difference spectra comparisons indicated significant differences between asthma and reference spectra. Differences like changes in protein structure, increase in DNA specific bands and increased glycosaminoglycans-like features were more prominent with increase in asthma severity. Multivariate tools using Principal-component-analysis (PCA) and Principal-component based-linear-discriminant analysis (PC-LDA) followed by Leave-one-out-cross-validation (LOOCV), were employed for data analyses. PCA and PC-LDA results indicate separation of all asthma groups from the reference group, with minor overlap (19.4%) between reference and mild groups. No overlap was observed between the treated severe and untreated severe groups, indicating that patient response to treatment could be determined. Overall promising results were obtained, and a large scale validation study on random subjects is warranted before the routine clinical usage of this technique

    Compatibility of Staining Protocols for Bone Tissue with Raman Imaging

    Full text link
    We report the use of Raman microscopy to image mouse calvaria stained with hematoxylin, eosin and toluidine blue. Raman imaging of stained specimens allows for direct correlation of histological and spectral information. A line-focus 785 nm laser imaging system with specialized near-infrared (NIR) microscope objectives and CCD detector were used to collect approximately 100 × 450 µm Raman images. Principal components analysis, a multivariate analysis technique, was used to determine whether the histological stains cause spectral interference (band shifts or intensity changes) or result in thermal damage to the examined tissue. Image analysis revealed factors for tissue components and the embedding medium, glycol methacrylate, only. Thus, Raman imaging proved to be compatible with histological stains such as hematoxylin, eosin and toluidine blue.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48009/1/223_2003_Article_38.pd

    Raman chemical mapping reveals site of action of HIV protease inhibitors in HPV16 E6 expressing cervical carcinoma cells

    No full text
    It has been shown that the HIV protease inhibitors indinavir and lopinavir may have activity against the human papilloma virus (HPV) type 16 inhibiting HPV E6-mediated proteasomal degradation of p53 in cultured cervical carcinoma cells. However, their mode and site of action is unknown. HPV-negative C33A cervical carcinoma cells and the same cells stably transfected with E6 (C33AE6) were exposed to indinavir and lopinavir at concentrations of 1 mM and 30 μM, respectively. The intracellular distribution of metabolites and metabolic changes induced by these treatments were investigated by Raman microspectroscopic imaging combined with the analysis of cell fractionation products by liquid chromatography-mass spectrometry (LC-MS). A uniform cellular distribution of proteins was found in drug-treated cells irrespective of cell type. Indinavir was observed to co-localise with nucleic acid in the nucleus, but only in E6 expressing cells. Principal components analysis (PCA) score maps generated on the full Raman hypercube and the corresponding PCA loadings plots revealed that the majority of metabolic variations influenced by the drug exposure within the cells were associated with changes in nucleic acids. Analysis of cell fractionation products by LC-MS confirmed that the level of indinavir in nuclear extracts was approximately eight-fold greater than in the cytoplasm. These data demonstrate that indinavir undergoes enhanced nuclear accumulation in E6-expressing cells, which suggests that this is the most likely site of action for this compound against HPV. © 2010 Springer-Verlag
    corecore