1,369 research outputs found
Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing
Utilizing an eigenfunction decomposition, we study the growth and spectra of
energy in the vortical and wave modes of a 3D rotating stratified fluid as a
function of . Working in regimes characterized by moderate
Burger numbers, i.e. or , our results
indicate profound change in the character of vortical and wave mode
interactions with respect to . As with the reference state of
, for the wave mode energy saturates quite quickly
and the ensuing forward cascade continues to act as an efficient means of
dissipating ageostrophic energy. Further, these saturated spectra steepen as
decreases: we see a shift from to scaling for
(where and are the forcing and dissipation scales,
respectively). On the other hand, when the wave mode energy
never saturates and comes to dominate the total energy in the system. In fact,
in a sense the wave modes behave in an asymmetric manner about .
With regard to the vortical modes, for , the signatures of 3D
quasigeostrophy are clearly evident. Specifically, we see a scaling
for and, in accord with an inverse transfer of energy, the
vortical mode energy never saturates but rather increases for all . In
contrast, for and increasing, the vortical modes contain a
progressively smaller fraction of the total energy indicating that the 3D
quasigeostrophic subsystem plays an energetically smaller role in the overall
dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract
Spin and Chirality Effects in Antler-Topology Processes at High Energy Colliders
We perform a model-independent investigation of spin and chirality
correlation effects in the antler-topology processes
at high energy colliders with polarized
beams. Generally the production process
can occur not only through the -channel exchange of vector bosons,
, including the neutral Standard Model (SM) gauge bosons,
and , but also through the - and -channel exchanges of new
neutral states, and , and the -channel
exchange of new doubly-charged states, . The general set of
(non-chiral) three-point couplings of the new particles and leptons allowed in
a renormalizable quantum field theory is considered. The general spin and
chirality analysis is based on the threshold behavior of the excitation curves
for pair production in collisions with
longitudinal and transverse polarized beams, the angular distributions in the
production process and also the production-decay angular correlations. In the
first step, we present the observables in the helicity formalism. Subsequently,
we show how a set of observables can be designed for determining the spins and
chiral structures of the new particles without any model assumptions. Finally,
taking into account a typical set of approximately chiral invariant scenarios,
we demonstrate how the spin and chirality effects can be probed experimentally
at a high energy collider.Comment: 50 pages, 14 figures, 6 tables, matches version published in EPJ
Probing CP Violation with and without Momentum Reconstruction at the LHC
We study the potential to observe CP-violating effects in SUSY cascade decay
chains at the LHC. We consider squark and gluino production followed by
subsequent decays into neutralinos with a three-body leptonic decay in the
final step. Asymmetries composed by triple products of momenta of the final
state particles are sensitive to CP-violating effects. Due to large boosts
these asymmetries can be difficult to observe at a hadron collider. We show
that using all available kinematic information one can reconstruct the decay
chains on an event-by-event basis even in the case of 3-body decays, neutrinos
and LSPs in the final state. We also discuss the most important experimental
effects like major backgrounds and momentum smearing due to finite detector
resolution. We show that with 300 fb of collected data, CP violation may
be discovered at the LHC for a wide range of the phase of the bino mass
parameter .Comment: Version accepted for publication in JHEP. Clarifications added on the
assumptions used for plots. New references adde
Classification of non-Riemannian doubled-yet-gauged spacetime
Assuming covariant fields as the `fundamental' variables,
Double Field Theory can accommodate novel geometries where a Riemannian metric
cannot be defined, even locally. Here we present a complete classification of
such non-Riemannian spacetimes in terms of two non-negative integers,
, . Upon these backgrounds, strings become
chiral and anti-chiral over and directions respectively, while
particles and strings are frozen over the directions. In
particular, we identify as Riemannian manifolds, as
non-relativistic spacetime, as Gomis-Ooguri non-relativistic string,
as ultra-relativistic Carroll geometry, and as Siegel's
chiral string. Combined with a covariant Kaluza-Klein ansatz which we further
spell, leads to Newton-Cartan gravity. Alternative to the conventional
string compactifications on small manifolds, non-Riemannian spacetime such as
, may open a new scheme of the dimensional reduction from ten to
four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in
(2.51) correcte
Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population
BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin
VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy
Peer reviewe
Academic Performance and Behavioral Patterns
Identifying the factors that influence academic performance is an essential
part of educational research. Previous studies have documented the importance
of personality traits, class attendance, and social network structure. Because
most of these analyses were based on a single behavioral aspect and/or small
sample sizes, there is currently no quantification of the interplay of these
factors. Here, we study the academic performance among a cohort of 538
undergraduate students forming a single, densely connected social network. Our
work is based on data collected using smartphones, which the students used as
their primary phones for two years. The availability of multi-channel data from
a single population allows us to directly compare the explanatory power of
individual and social characteristics. We find that the most informative
indicators of performance are based on social ties and that network indicators
result in better model performance than individual characteristics (including
both personality and class attendance). We confirm earlier findings that class
attendance is the most important predictor among individual characteristics.
Finally, our results suggest the presence of strong homophily and/or peer
effects among university students
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
General Gauge and Anomaly Mediated Supersymmetry Breaking in Grand Unified Theories with Vector-Like Particles
In Grand Unified Theories (GUTs) from orbifold and various string
constructions the generic vector-like particles do not need to form complete
SU(5) or SO(10) representations. To realize them concretely, we present
orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be
broken down to flipped SU(5) X U(1)_X or Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R
gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like
particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass
can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry
Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated
Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general
gaugino mass relations and their indices, which are valid from the GUT scale to
the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) X
U(1)_X models, and the Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R models. In the
deflected AMSB, we also define the new indices for the gaugino mass relations,
and calculate them as well. Using these gaugino mass relations and their
indices, we may probe the messenger fields at intermediate scale in the GMSB
and deflected AMSB, determine the supersymmetry breaking mediation mechanisms,
and distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.Comment: RevTex4, 45 pages, 15 tables, version to appear in JHE
- …
